Turn off MathJax
Article Contents
ZHOU Hongping, LI Rui, LI Liuling, et al. Micromotions parameter extraction of birds and rotary-wing unmanned aerial vehicles based on vortex radar[J]. Journal of Radars, in press. doi: 10.12000/JR25164
Citation: ZHOU Hongping, LI Rui, LI Liuling, et al. Micromotions parameter extraction of birds and rotary-wing unmanned aerial vehicles based on vortex radar[J]. Journal of Radars, in press. doi: 10.12000/JR25164

Micromotions Parameter Extraction of Birds and Rotary-wing unmanned aerial vehicles Based on Vortex Radar

DOI: 10.12000/JR25164 CSTR: 32380.14.JR25164
Funds:  The National Natural Science Foundation of China (61775050)
More Information
  • Corresponding author: GUO Zhongyi, guozhongyi@hfut.edu.cn
  • Received Date: 2025-09-01
    Available Online: 2026-02-10
  • To address the urgent need to identify birds and rotary-wing unmanned aerial vehicles (UAVs), this paper proposes a vortex radar–based method for extracting micromotion parameters of targets. The study focused on target parameter acquisition and systematically extended target modeling and parameter extraction strategies. First, mathematical models were developed for the body motion and wing flapping behavior of birds as well as for the rotor movement characteristics and body structure of rotary-wing UAVs. Further, analytical expressions for the radial and rotational Doppler frequency shifts at scattering points were derived, and micro-Doppler features were extracted from radar echo signals to enable target parameter inversion. For bird targets, the radial Doppler frequency was estimated by extracting the spectral peak of the echo signal to obtain the flight velocity. In addition, by combining the rotational Doppler frequency shifts of the scattering points and analyzing the variations of the rotational Doppler frequency using the short-time Fourier transform (STFT), the wing-flapping length was estimated. Even under low signal-to-noise ratio (SNR) conditions, the estimation error of the wing-flapping length remained within 0.03 m. For rotary-wing UAV targets, an echo signal model was first constructed, and the analytical relationship between the radial and rotational components of the micro-Doppler frequency shift was derived. Using the reconstructed Doppler information and through range–time domain analysis, six structural and motion parameters were retrieved, including the Euler angles rotor rotational speed, rotor length, and the distance between the UAV body and rotor. The estimation errors for all parameters were significantly lower than those obtained with conventional approaches based on individual Doppler features, with all parameters remaining within 2%. Simulation results demonstrated that the proposed vortex radar–based parameter extraction method enables accurate multiparameter estimation for birds and rotary-wing UAVs. The method also exhibits stable and reliable performance under low SNR conditions, confirming its effectiveness and applicability in practical engineering scenarios.

     

  • loading
  • [1]
    JIAN M, LU Zhenzhong, and CHEN V C. Experimental study on radar micro-Doppler signatures of unmanned aerial vehicles[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 854–857. doi: 10.1109/RADAR.2017.7944322.
    [2]
    DE WIT J J M, HARMANNY R I A, and PRÉMEL-CABIC G. Micro-Doppler analysis of small UAVs[C]. The 9th European Radar Conference, Amsterdam, Netherlands, 2012: 210–213.
    [3]
    NANZER J A and CHEN V C. Microwave interferometric and Doppler radar measurements of a UAV[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1628–1633. doi: 10.1109/RADAR.2017.7944468.
    [4]
    RAHMAN S and ROBERTSON D A. Millimeter-wave micro-Doppler measurements of small UAVs[C]. SPIE 10188, Radar Sensor Technology XXI, Anaheim, USA, 2017: 101880T. doi: 10.1117/12.2261942.
    [5]
    GOVONI M A. Micro-Doppler signal decomposition of small commercial drones[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 425–429. doi: 10.1109/RADAR.2017.7944240.
    [6]
    HANIF A, MUAZ M, HASAN A, et al. Micro-Doppler based target recognition with radars: A review[J]. IEEE Sensors Journal, 2022, 22(4): 2948–2961. doi: 10.1109/JSEN.2022.3141213.
    [7]
    HARMANNY R I A, DE WIT J J M, and PRÉMEL CABIC G. Radar micro-Doppler feature extraction using the spectrogram and the cepstrogram[C]. The 11th European Radar Conference, Rome, Italy, 2014: 165–168. doi: 10.1109/EuRAD.2014.6991233.
    [8]
    陈宏昆, 察豪, 刘峰. 鸟类目标微多普勒分析及参数估计[J]. 电讯技术, 2019, 59(4): 431–436. doi: 10.3969/j.issn.1001-893x.2019.04.011.

    CHEN Hongkun, CHA Hao, and LIU Feng. Micro-Doppler analysis and parameter estimation of bird target[J]. Telecommunication Engineering, 2019, 59(4): 431–436. doi: 10.3969/j.issn.1001-893x.2019.04.011.
    [9]
    RAHMAN S and ROBERTSON D A. Radar micro-Doppler signatures of drones and birds at K-band and W-band[J]. Scientific Reports, 2018, 8(1): 17396. doi: 10.1038/s41598-018-35880-9.
    [10]
    陈唯实, 李敬. 雷达探鸟技术发展与应用综述[J]. 现代雷达, 2017, 39(2): 7–17. doi: 10.16592/j.cnki.1004-7859.2017.02.002.

    CHEN Weishi and LI Jing. Review on development and applications of avian radar technology[J]. Modern Radar, 2017, 39(2): 7–17. doi: 10.16592/j.cnki.1004-7859.2017.02.002.
    [11]
    LI Liulin, YUE Wei, KAI Chengzhi, et al. Perfect acoustic-vortexes constructed by the Fourier transform of quasi-Bessel beams based on the simplified ring array of sectorial planar transducers[J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2023, 70(7): 748–758. doi: 10.1109/TUFFC.2023.3277854.
    [12]
    郭忠义, 王运来, 汪彦哲, 等. 涡旋雷达成像技术研究进展[J]. 雷达学报, 2021, 10(5): 665–679. doi: 10.12000/JR21075.

    GUO Zhongyi, WANG Yunlai, WANG Yanzhe, et al. Research advances in vortex radar imaging technology[J]. Journal of Radars, 2021, 10(5): 665–679. doi: 10.12000/JR21075.
    [13]
    LI Liulin, LIU Bingyi, and GUO Zhongyi. Robust orbital-angular-momentum-based underwater acoustic communication with dynamic modal decomposition method[J]. The Journal of the Acoustical Society of America, 2024, 155(5): 3195–3205. doi: 10.1121/10.0025988.
    [14]
    GUO Kai, LEI Shuang, LEI Yi, et al. Research on detecting targets’ accelerations based on vortex electromagnetic wave in non-line-of-sight scenario[J]. IEEE Sensors Journal, 2023, 23(4): 4078–4084. doi: 10.1109/JSEN.2022.3232364.
    [15]
    WANG Jianqiu, LIU Kang, CHENG Yongqiang, et al. Three-dimensional target imaging based on vortex stripmap SAR[J]. IEEE Sensors Journal, 2019, 19(4): 1338–1345. doi: 10.1109/JSEN.2018.2879814.
    [16]
    郭忠义, 汪彦哲, 郑群, 等. 涡旋电磁波天线技术研究进展[J]. 雷达学报, 2019, 8(5): 631–655. doi: 10.12000/JR19091.

    GUO Zhongyi, WANG Yanzhe, ZHANG Qun, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655. doi: 10.12000/JR19091.
    [17]
    ZHANG Lingling, ZHU Yongzhong, CHEN Yijun, et al. Three-dimensional micro-Doppler parameter estimation of rotor target based on VEMW radar[J]. IEEE Sensors Journal, 2025, 25(6): 10155–10162. doi: 10.1109/JSEN.2025.3533009.
    [18]
    YUAN Tiezhu, WANG Hongqiang, QIN Yuliang, et al. Electromagnetic vortex imaging using uniform concentric circular arrays[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1024–1027. doi: 10.1109/LAWP.2015.2490169.
    [19]
    LIU Kang, CHENG Yongqiang, YANG Zhaocheng, et al. Orbital-angular-momentum-based electromagnetic vortex imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 711–714. doi: 10.1109/LAWP.2014.2376970.
    [20]
    LIU Hongyan, LIU Kang, CHENG Yongqiang, et al. Microwave vortex imaging based on dual coupled OAM beams[J]. IEEE Sensors Journal, 2020, 20(2): 806–815. doi: 10.1109/JSEN.2019.2943698.
    [21]
    MAO Rongrong, LIU Kang, LIU Hongyan, et al. Electromagnetic vortex imaging based on OAM multiplexing beam with orthogonal polyphase coding[J]. IEEE Sensors Journal, 2023, 23(24): 30786–30793. doi: 10.1109/JSEN.2023.3329359.
    [22]
    WANG Siyuan, QU Yi, CHEN Yijun, et al. Three-dimensional interferometric imaging with vortex electromagnetic wave radar based on uniform circular array[J]. IEEE Sensors Journal, 2024, 24(20): 32858–32870. doi: 10.1109/JSEN.2024.3453869.
    [23]
    WANG Yu, LIU Kang, LIU Hongyan, et al. Detection of rotational object in arbitrary position using vortex electromagnetic waves[J]. IEEE Sensors Journal, 2021, 21(4): 4989–4994. doi: 10.1109/JSEN.2020.3032665.
    [24]
    王煜, 刘康, 王建秋, 等. 涡旋电磁波雷达锥体目标旋转多普勒探测[J]. 雷达学报, 2021, 10(5): 740–748. doi: 10.12000/JR21074.

    WANG Yu, LIU Kang, WANG Jianqiu, et al. Rotational Doppler detection of a cone-shaped target under the illumination of a vortex electromagnetic wave[J]. Journal of Radars, 2021, 10(5): 740–748. doi: 10.12000/JR21074.
    [25]
    ZHOU Hongping, PENG Chao, LEI Yi, et al. Estimating parameters of ballistic target by single hybrid radar based on vortex and wideband electromagnetic waves[J]. IEEE Sensors Journal, 2023, 23(21): 26423–26429. doi: 10.1109/JSEN.2023.3312442.
    [26]
    LI Rui, LI Liulin, ZHOU Hongping, et al. OAM-radar imaging: A review[J]. Defence Technology, 2025. doi: 10.1016/j.dt.2025.11.021.
    [27]
    屈海友, 程迪, 陈畅, 等. 涡旋雷达高分辨率稀疏自校正相位误差成像[J]. 雷达学报, 2021, 10(5): 699–717. doi: 10.12000/JR21094.

    QU Haiyou, CHENG Di, CHEN Chang, et al. High-resolution sparse self-calibration imaging for vortex radar with phase error[J]. Journal of Radars, 2021, 10(5): 699–717. doi: 10.12000/JR21094.
    [28]
    蒋彦雯, 范红旗, 李双勋. 基于稀疏贝叶斯学习的太赫兹电磁涡旋三维成像方法[J]. 雷达学报, 2021, 10(5): 718–724. doi: 10.12000/JR21151.

    JIANG Yanwen, FAN Hongqi, and LI Shuangxun. A sparse Bayesian learning approach for vortex electromagnetic wave three-dimensional imaging in the Terahertz band[J]. Journal of Radars, 2021, 10(5): 718–724. doi: 10.12000/JR21151.
    [29]
    WANG Siyuan, CHEN Yijun, QU Yi, et al. Vortex electromagnetic radar imaging and adaptive resource scheduling based on uniform concentric circular arrays[J]. IEEE Sensors Journal, 2024, 24(14): 22658–22671. doi: 10.1109/JSEN.2024.3405969.
    [30]
    罗迎, 龚逸帅, 陈怡君, 等. 基于跟踪脉冲的MIMO雷达多目标微动特征提取[J]. 雷达学报, 2018, 7(5): 575–584. doi: 10.12000/JR18035.

    LUO Ying, GONG Yishuai, CHEN Yijun, et al. Multi-target micro-motion feature extraction based on tracking pulses in MIMO radar[J]. Journal of Radars, 2018, 7(5): 575–584. doi: 10.12000/JR18035.
    [31]
    LIU Hongyan, WANG Yu, WANG Jianqiu, et al. Electromagnetic vortex enhanced imaging using fractional OAM beams[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(6): 948–952. doi: 10.1109/LAWP.2021.3067914.
    [32]
    郭忠义, 汪彦哲, 王运来, 等. 涡旋电磁波旋转多普勒效应研究进展[J]. 雷达学报, 2021, 10(5): 725–739. doi: 10.12000/JR21109.

    GUO Zhongyi, WANG Yanzhe, WANG Yunlai, et al. Research advances on the rotational Doppler effect of vortex electromagnetic waves[J]. Journal of Radars, 2021, 10(5): 725–739. doi: 10.12000/JR21109.
    [33]
    林屹峰, 单明明, 孔旭东, 等. 涡旋电磁波轨道角动量模态抗干扰性能分析[J]. 雷达学报, 2021, 10(5): 773–784. doi: 10.12000/JR21096.

    LIN Yifeng, SHAN Mingming, KONG Xudong, et al. Orbital angular momentum anti-interference properties analysis of electromagnetic vortex wave[J]. Journal of Radars, 2021, 10(5): 773–784. doi: 10.12000/JR21096.
    [34]
    YUAN Hang, LUO Ying, CHEN Yijun, et al. Micro-motion parameter extraction of rotating target based on vortex electromagnetic wave radar[J]. IET Radar, Sonar & Navigation, 2021, 15(12): 1594–1606. doi: 10.1049/rsn2.12149.
    [35]
    HYVARINEN A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Transactions on Neural Networks, 1999, 10(3): 626–634. doi: 10.1109/72.761722.
    [36]
    XUE Yuanhe, YAN Wei, ZHOU Mengxia, et al. Electromagnetic interference feature extraction for permanent magnet synchronous motors currents based on fast independent component analysis[J]. IEEE Transactions on Consumer Electronics, 2025, 71(4): 10057–10065. doi: 10.1109/TCE.2025.3615955.
    [37]
    LIU Dongju and Yu JIAN. Otsu method and K-means[C]. The Ninth International Conference on Hybrid Intelligent Systems, Shenyang, China, 2009: 344–349. doi: 10.1109/HIS.2009.74.
    [38]
    QIN Xiaoyu, DENG Bin, and WANG Hongqiang. Micro-Doppler feature extraction of rotating structures of aircraft targets with terahertz radar[J]. Remote Sensing, 2022, 14(16): 3856. doi: 10.3390/rs14163856.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(22) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint