Citation: | WANG Xuesong, PAN Jiameng, CHEN Long, et al. Multipath effects and suppression in reference channels of passive bistatic radar[J]. Journal of Radars, in press. doi: 10.12000/JR25155 |
[1] |
郁成阳, 周婉婷, 徐海洲, 等. 非合作式双基地雷达系统设计与验证[J]. 雷达科学与技术, 2024, 22(2): 119–125. doi: 10.3969/j.issn.1672-2337.2024.02.001.
YU Chengyang, ZHOU Wanting, XU Haizhou, et al. Non-cooperative bistatic radar system design and verification[J]. Radar Science and Technology, 2024, 22(2): 119–125. doi: 10.3969/j.issn.1672-2337.2024.02.001.
|
[2] |
HORLBECK M, SCHEINER B, and WEIGEL R. Overview of passive radar and its receiver architectures to enhance safety in civil aviation: A comprehensive analysis of history, principles, and performance optimization strategies[J]. IEEE Microwave Magazine, 2024, 25(5): 53–71. doi: 10.1109/MMM.2024.3363991.
|
[3] |
王森, 鲍庆龙, 潘嘉蒙, 等. 基于改进概率假设密度滤波器的非合作双基地雷达目标跟踪[J]. 系统工程与电子技术, 2023, 45(7): 2002–2009. doi: 10.12305/j.issn.1001-506X.2023.07.10.
WANG Sen, BAO Qinglong, PAN Jiameng, et al. Target tracking for noncooperative bistatic radar based on improved probability hypothesis density filter[J]. Systems Engineering and Electronics, 2023, 45(7): 2002–2009. doi: 10.12305/j.issn.1001-506X.2023.07.10.
|
[4] |
MAZUREK G, KULPA K, MALANOWSKI M, et al. Experimental seaborne passive radar[J]. Sensors, 2021, 21(6): 2171. doi: 10.3390/s21062171.
|
[5] |
周昕, 易建新, 万显荣, 等. 基于低轨卫星机会照射源的无人机目标前向散射探测方法与实验[J]. 信号处理, 2024, 40(12): 2105–2115. doi: 10.12466/xhcl.2024.12.001.
ZHOU Xin, YI Jianxin, WAN Xianrong, et al. Methods and experiments for forward scattering detection of UAV targets based on opportunistic illumination from low-orbit satellites[J]. Journal of Signal Processing, 2024, 40(12): 2105–2115. doi: 10.12466/xhcl.2024.12.001.
|
[6] |
QIU Yanlong, ZHANG Jiaxi, CHEN Yanjiao, et al. Radar2: Passive spy radar detection and localization using COTS mmWave radar[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2810–2825. doi: 10.1109/TIFS.2023.3268880.
|
[7] |
TAYLOR A and POULLIN D. Drone detection using 4G-LTE-based passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(4): 8804–8820. doi: 10.1109/TAES.2025.3545000.
|
[8] |
GOMEZ-DEL-HOYO P and SAMCZYNSKI P. Starlink-based passive radar for Earth's surface imaging: First experimental results[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 13949–13965. doi: 10.1109/JSTARS.2024.3437179.
|
[9] |
HUANG Chuan, LI Zhongyu, LOU Mingyue, et al. BeiDou-based passive radar vessel target detection: Method and experiment via long-time optimized integration[J]. Remote Sensing, 2021, 13(19): 3933. doi: 10.3390/rs13193933.
|
[10] |
MAKSYMIUK R, GOMEZ DEL HOYO P, ABRATKIEWICZ K, et al. 5G‐based passive radar on a moving platform—detection and imaging[J]. IET Radar, Sonar & Navigation, 2024, 18(12): 2414–2426. doi: 10.1049/rsn2.12559.
|
[11] |
HUANG Chuan, LI Zhongyu, AN Hongyang, et al. Maritime moving target detection using multiframe recursion association in GNSS-based passive radar[J]. IEEE Sensors Journal, 2024, 24(5): 6380–6391. doi: 10.1109/JSEN.2023.3343924.
|
[12] |
LIU Jun, LI Hongbin, and HIMED B. On the performance of the cross-correlation detector for passive radar applications[J]. Signal Processing, 2015, 113: 32–37. doi: 10.1016/j.sigpro.2015.01.006.
|
[13] |
万显荣, 张德磊, 柯亨玉, 等. 全球性数字广播高频外辐射源雷达参考信号重构[J]. 系统工程与电子技术, 2012, 34(11): 2231–2236. doi: 10.3969/j.issn.1001-506X.2012.11.08.
WAN Xianrong, ZHANG Delei, KE Hengyu, et al. Reference signal reconstruction of HF passive bistatic radar based on DRM digital broadcasting[J]. Systems Engineering and Electronics, 2012, 34(11): 2231–2236. doi: 10.3969/j.issn.1001-506X.2012.11.08.
|
[14] |
MAHFOUDIA O, HORLIN F, and NEYT X. Performance analysis of the reference signal reconstruction for DVB-T passive radars[J]. Signal Processing, 2019, 158: 26–35. doi: 10.1016/j.sigpro.2018.12.016.
|
[15] |
ZUO Luo, WANG Jun, ZHAO Te, et al. A joint low-rank and sparse method for reference signal purification in DTMB-based passive bistatic radar[J]. Sensors, 2021, 21(11): 3607. doi: 10.3390/s21113607.
|
[16] |
李纪传. 无源雷达杂波对消关键技术及目标检测方法研究[D]. [博士论文], 中国科学院大学,2015.
LI Jichuan. Research on Key Technology of Clutter Cancellation and Moving Target Detection Algorithm of Passive Radar[D].[Ph.D. dissertation], University of Chinese Academy of Sciences.2015.
|
[17] |
朱家兵,洪一. 基于复倒谱技术的无源雷达直达波提纯方法[J]. 现代雷达, 2007(08): 75–78. doi: 10.16592/j.cnki.1004-7859.2007.08.022.
ZHU Jiabing, HONG Yi. A Direct-path-wave Purified Approach to Passive Radar Based on Cepstrum Technique[J]. Modern Radar, 2007(08): 75–78. doi: 10.16592/j.cnki.1004-7859.2007.08.022.
|
[18] |
XING Zhe and GAO Yong. A modulation classification algorithm for multipath signals based on cepstrum[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7): 4742–4752. doi: 10.1109/TIM.2019.2955535.
|
[19] |
陈刚, 王俊, 王珏, 等. 外辐射源雷达参考信号提纯方法[J]. 系统工程与电子技术, 2018, 40(1): 45–49. doi: 10.3969/j.issn.1001-506X.2018.01.07.
CHEN Gang, WANG Jun, WANG Jue, et al. Reference signal purifying method in passive bistatic radar[J]. Systems Engineering and Electronics, 2018, 40(1): 45–49. doi: 10.3969/j.issn.1001-506X.2018.01.07.
|
[20] |
SONG Jie, HE You, GUAN Jian, et al. Direct wave reconstruction of non-cooperative bistatic pulse radar using modified CMA+MMA algorithm[C]. 2009 IET International Radar Conference, Guilin, China, 2009: 1–5, doi: 10.1049/cp.2009.0206.
|
[21] |
CARDINALI R, COLONE F, LOMBARDO P, et al. Multipath cancellation on reference antenna for passive radar which exploits FM transmission[C]. 2007 IET International Conference on Radar Systems, Edinburgh, UK, 2007: 1–5, doi: 10.1049/cp:20070668.
|
[22] |
JIN Hongbin, LUO Weilin, LI Hao, et al. Underdetermined blind source separation of radar signals based on genetic annealing algorithm[J]. The Journal of Engineering, 2022, 2022(3): 261–273. doi: 10.1049/tje2.12108.
|
[23] |
ABRATKIEWICZ K, SAMCZYŃSKI P J, RYTEL-ANDRIANIK R, et al. Multipath interference removal in receivers of linear frequency modulated radar pulses[J]. IEEE Sensors Journal, 2021, 21(17): 19000–19012. doi: 10.1109/JSEN.2021.3087319.
|
[24] |
KANONA M E A, ALIAS M Y, HASSAN M K, et al. A machine learning based vehicle classification in forward scattering radar[J]. IEEE Access, 2022, 10: 64688–64700. doi: 10.1109/ACCESS.2022.3183127.
|
[25] |
吴贞宇, 夏厚培. 基于HAF的混叠多分量LFM信号时域参数测量[J]. 电子科技, 2021, 34(4): 6–11. doi: 10.16180/j.cnki.issn1007-7820.2021.04.002.
WU Zhenyu and XIA Houpei. Time domain parameter measurement of aliased multi-component LFM signals based on HAF[J]. Electronic Science and Technology, 2021, 34(4): 6–11. doi: 10.16180/j.cnki.issn1007-7820.2021.04.002.
|
[26] |
LU Zhenkun, LI Shaohang, QIU Ji, et al. An efficient method for parameter estimation and separation of multi-component LFM signals[J]. Signal Processing, 2023, 207: 108964. doi: 10.1016/j.sigpro.2023.108964.
|
[27] |
ABRATKIEWICZ K and SAMCZYŃSKI P. An adaptive spectrogram and accelerogram algorithm for electronic warfare applications[C]. 2020 IEEE International Radar Conference (RADAR), Washington, DC, USA, 2020: 530–535. doi: 10.1109/RADAR42522.2020.9114800.
|