Turn off MathJax
Article Contents
FANG Yuxin, FAN Chenqing, MENG Junmin, et al. A quasi-linear inversion algorithm for retrieving sea surface elevation from gf-3 SAR images[J]. Journal of Radars, in press. doi: 10.12000/JR25146
Citation: FANG Yuxin, FAN Chenqing, MENG Junmin, et al. A quasi-linear inversion algorithm for retrieving sea surface elevation from gf-3 SAR images[J]. Journal of Radars, in press. doi: 10.12000/JR25146

A Quasi-linear Inversion Algorithm for Retrieving Sea Surface Elevation from GF-3 SAR Images

DOI: 10.12000/JR25146 CSTR: 32380.14.JR25146
Funds:  The National Natural Science Foundation of China (42206178)
More Information
  • Corresponding author: YAN Qiushuang, yanqiushuang@upc.edu.cn
  • Received Date: 2025-08-01
  • Rev Recd Date: 2026-02-01
  • Available Online: 2026-02-05
  • Sea surface elevation is crucial for characterizing individual waves, wave groups, and freak waves, offering an accurate representation of inhomogeneous sea states. This study presents a quasi-linear inversion strategy for retrieving sea surface elevation from GF-3 Synthetic Aperture Radar (SAR) images. The algorithm enables rapid inversion within 10 s per scene without the need for external data and effectively resolves range-traveling waves. Case studies conducted under three distinct sea states demonstrate its ability to extract maximum wave heights and identify wave groups. Additionally, inversion results from 2405 GF-3 wave mode SAR images following quality control are compared with ERA5 reanalysis spectra and altimeter data. The comparisons reveal that the retrieved Significant Wave Height (SWH) has a root mean square error of 0.48 m compared with ERA5 data. In low-to-moderate sea states, with significant wave heights below 3 m, the retrieved SWH shows strong consistency with ERA5 spectra and altimeter measurements. This algorithm serves as an effective tool for rapid monitoring and analysis of sea states using GF-3 SAR.

     

  • loading
  • [1]
    HOLTHUIJSEN L H. Waves in Oceanic and Coastal Waters[M]. Cambridge: Cambridge University Press, 2010: 25-35. doi: 10.1017/CBO9780511618536.
    [2]
    HASSELMANN K, CHAPRON B, AOUF L, et al. The ERS SAR wave mode: A breakthrough in global ocean wave observations[OL]. European Space Agency, https://pure.mpg.de/rest/items/item_2039578/component/file_3317382/content. 2013: 167-197.
    [3]
    NIETO BORGE J C, LEHNER S, NIEDERMEIER A, et al. Detection of ocean wave groupiness from spaceborne synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 2004, 109(C7): C07005. doi: 10.1029/2004JC002298.
    [4]
    SCHULZ-STELLENFLETH J and LEHNER S. Measurement of 2-D sea surface elevation fields using complex synthetic aperture radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1149–1160. doi: 10.1109/TGRS.20O4.826811.
    [5]
    ARDHUIN F, STOPA J E, CHAPRON B, et al. Observing sea states[J]. Frontiers in Marine Science, 2019, 6: 124. doi: 10.3389/fmars.2019.00124.
    [6]
    SCHULZ-STELLENFLETH J, HORSTMANN J, LEHNER S, et al. Sea surface imaging with an across-track interferometric synthetic aperture radar: The SINEWAVE experiment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(9): 2017–2028. doi: 10.1109/36.951092.
    [7]
    张彪, 何宜军. 干涉合成孔径雷达海浪遥感研究[J]. 遥感技术与应用, 2006, 21(1): 11–17. doi: 10.3969/j.issn.1004-0323.2006.01.003.

    ZHANG Biao and HE Yijun. The study on remote sensing of ocean wave by interferometric synthetic aperture radar[J]. Remote Sensing Technology and Application, 2006, 21(1): 11–17. doi: 10.3969/j.issn.1004-0323.2006.01.003.
    [8]
    张彪. 干涉合成孔径雷达海浪遥感理论与应用研究[D]. [博士论文], 中国科学院研究生院(海洋研究所), 2008.

    ZHANG Biao. Theoretical and application study of remoting sensing ocean wave by interferometric synthetic aperture radar[D]. [Ph.D. dissertation], Institute of Oceanology, Chinese Academy of Sciences, 2008.
    [9]
    SUN Daozhong, ZHANG Yanmin, WANG Yunhua, et al. Ocean wave inversion based on airborne IRA images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 1001013. doi: 10.1109/TGRS.2021.3101223.
    [10]
    ZHANG Chunyang, CHEN Zezong, ZHAO Chen, et al. Deterministic sea wave prediction based on least squares with regularization algorithm using coherent microwave radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4209809. doi: 10.1109/TGRS.2022.3203520.
    [11]
    BERGAMASCO F, TORSELLO A, SCLAVO M, et al. WASS: An open-source pipeline for 3D stereo reconstruction of ocean waves[J]. Computers & Geosciences, 2017, 107: 28–36. doi: 10.1016/j.cageo.2017.07.001.
    [12]
    QIU Jidong, ZHANG Biao, CHEN Zhongbiao, et al. A new modulation transfer function with range and azimuth dependence for ocean wave spectra retrieval from X-band marine radar observations[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(8): 1373–1377. doi: 10.1109/LGRS.2017.2713438.
    [13]
    廖明生, 林珲. 雷达干涉测量: 原理与信号处理基础[M]. 北京: 测绘出版社, 2003: 36-48.

    LIAO Mingsheng and LIN Hui. Synthetic Aperture Radar Interferometry: Principle and Signal Processing[M]. Beijing: Surveying and Mapping Press, 2003: 36-48.
    [14]
    PAN Bo, WANG Zhibin, ZHANG Qingjun, et al. First simultaneous inversion of sea-surface velocity and height based on PIE-1 SAR constellation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5206118. doi: 10.1109/TGRS.2025.3544505.
    [15]
    SUN Daozhong, WANG Yunhua, XU Zhichao, et al. Ocean wave inversion based on hybrid along- and cross-track interferometry[J]. Remote Sensing, 2022, 14(12): 2793. doi: 10.3390/rs14122793.
    [16]
    HASSELMANN K and HASSELMANN S. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion[J]. Journal of Geophysical Research: Oceans, 1991, 96(C6): 10713–10729. doi: 10.1029/91JC00302.
    [17]
    王小青, 祁瑞, 姚晓楠, 等. 动态海面SAR成像高精度仿真方法及其典型应用[J]. 雷达学报(中英文), 2025, 14(3): 712–734. doi: 10.12000/JR24255.

    WANG Xiaoqing, QI Rui, YAO Xiaonan, et al. High-precision simulation of dynamic oceans synthetic aperture radar imaging and its typical application[J]. Journal of Radars, 2025, 14(3): 712–734. doi: 10.12000/JR24255.
    [18]
    WANG Anqi, WANG Xiaoqing, CHEN Jian, et al. Wave spectrum retrieval method based on full-link ocean surface SAR imaging simulation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5219120. doi: 10.1109/TGRS.2023.3324812.
    [19]
    ENGEN G and JOHNSEN H. SAR-ocean wave inversion using image cross spectra[J]. IEEE Transactions on Geoscience and Remote Sensing, 1995, 33(4): 1047–1056. doi: 10.1109/36.406690.
    [20]
    MASTENBROEK C and DE VALK C F. A semiparametric algorithm to retrieve ocean wave spectra from synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 2000, 105(C2): 3497–3516. doi: 10.1029/1999JC900282.
    [21]
    HASSELMANN S, BRÜNING C, HASSELMANN K, et al. An improved algorithm for the retrieval of ocean wave spectra from synthetic aperture radar image spectra[J]. Journal of Geophysical Research: Oceans, 1996, 101(C7): 16615–16629. doi: 10.1029/96JC00798.
    [22]
    SCHULZ-STELLENFLETH J, LEHNER S, and HOJA D. A parametric scheme for the retrieval of two-dimensional ocean wave spectra from synthetic aperture radar look cross spectra[J]. Journal of Geophysical Research: Oceans, 2005, 110(C5): C05004. doi: 10.1029/2004JC002822.
    [23]
    SUN Jian and GUAN Changlong. Parameterized first-guess spectrum method for retrieving directional spectrum of swell-dominated waves and huge waves from SAR images[J]. Chinese Journal of Oceanology and Limnology, 2006, 24(1): 12–20. doi: 10.1007/BF02842769.
    [24]
    JIANG Haoyu, MIRONOV A, REN Lin, et al. Validation of wave spectral partitions from SWIM instrument on-board CFOSAT against in situ data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4204013. doi: 10.1109/TGRS.2021.3110952.
    [25]
    HERSBACH H, BELL B, BERRISFORD P, et al. The ERA5 global reanalysis[J]. Quarterly Journal of the Royal Meteorological Society, 2020, 146(730): 1999–2049. doi: 10.1002/qj.3803.
    [26]
    NIEDERMEIER A, BORGE J C N, LEHNER S, et al. A wavelet-based algorithm to estimate ocean wave group parameters from radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2): 327–336. doi: 10.1109/TGRS.2004.836873.
    [27]
    WANG Jichao and WANG Yue. Evaluation of the ERA5 significant wave height against NDBC buoy data from 1979 to 2019[J]. Marine Geodesy, 2022, 45(2): 151–165. doi: 10.1080/01490419.2021.2011502.
    [28]
    FANG Yuxin, FAN Chenqing, CAO Rui, et al. A two-stage strategy for retrieving 2-D ocean wave spectra from Chinese Gaofen-3 SAR wave mode products[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 10013–10031. doi: 10.1109/JSTARS.2024.3394057.
    [29]
    万勇, 马恩男, 曲若钊, 等. 哨兵1号和高分三号SAR数据海浪谱反演精度评估[J]. 遥感学报, 2023, 27(4): 891–904. doi: 10.11834/jrs.20221503.

    WAN Yong, MA Ennan, QU Ruozhao, et al. Accuracy evaluation of wave spectrum inversion based on Sentinel-1 and GF-3 SAR data[J]. National Remote Sensing Bulletin, 2023, 27(4): 891–904. doi: 10.11834/jrs.20221503.
    [30]
    HARA T and KARACHINTSEV A V. Observation of nonlinear effects in ocean surface wave frequency spectra[J]. Journal of Physical Oceanography, 2003, 33(2): 422–430. doi: 10.1175/1520-0485(2003)033<0422:OONEIO>2.0.CO;2.
    [31]
    ZHENG Zhichao, YAN Qiushuang, FAN Chenqing, et al. Optimized estimation of azimuth cutoff for retrieval of significant wave height and wind speed from polarimetric Gaofen-3 SAR wave mode data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 10938–10955. doi: 10.1109/JSTARS.2024.3405736.
    [32]
    DIDENKULOVA E, DIDENKULOVA I, and MEDVEDEV I. Freak wave events in 2005-2021: Statistics and analysis of favourable wave and wind conditions[J]. Natural Hazards and Earth System Sciences Discussions, 2022, 23(4): 1–17. doi: 10.5194/nhess-2022-215.
    [33]
    WANG He, MOUCHE A, HUSSON R, et al. Indian ocean crossing swells: New insights from “fireworks” perspective using Envisat advanced synthetic aperture radar[J]. Remote Sensing, 2021, 13(4): 670. doi: 10.3390/rs13040670.
    [34]
    ZHANG Yanmin, WANG Yunhua, and XU Qiaohui. On the nonlinear mapping of an ocean wave spectrum into a new polarimetric SAR image spectrum[J]. Journal of Physical Oceanography, 2020, 50(11): 3109–3122. doi: 10.1175/JPO-D-20-0045.1.
    [35]
    PLESKACHEVSKY A, TINGS B, JACOBSEN S, et al. A system for near-real-time monitoring of the sea state using SAR satellites[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5219018. doi: 10.1109/TGRS.2024.3419582.
    [36]
    HWANG P A and FOIS F. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering[J]. Journal of Geophysical Research: Oceans, 2015, 120(5): 3640–3657. doi: 10.1002/2015JC010782.
    [37]
    WANG He, CHEN Yihong, XU Ying, et al. Deep learning merge of 2-D wave spectra from real and synthetic aperture radars[J]. IEEE Geoscience and Remote Sensing Letters, 2025, 22: 1505505. doi: 10.1109/LGRS.2025.3629683.
    [38]
    WANG He, MOUCHE A, HUSSON R, et al. Assessment of ocean swell height observations from Sentinel-1A/B wave mode against buoy in situ and modeling hindcasts[J]. Remote Sensing, 2022, 14(4): 862. doi: 10.3390/rs14040862.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(44) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint