| Citation: | XU Congan, GAO Long, ZHANG Chi, et al. Maritime multimodal data resource system—infrared-visible dual-modal dataset for ship detection[J]. Journal of Radars, in press. doi: 10.12000/JR25144 |
| [1] |
LIU Zikun, YUAN Liu, WENG Lubin, et al. A high resolution optical satellite image dataset for ship recognition and some new baselines[C]. The 6th International Conference on Pattern Recognition Applications and Methods (ICPRAM 2017), Porto, Portugal, 2017: 324–331. doi: 10.5220/0006120603240331.
|
| [2] |
ZHANG Zhengning, ZHANG Lin, WANG Yue, et al. ShipRSImageNet: A large-scale fine-grained dataset for ship detection in high-resolution optical remote sensing images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 8458–8472. doi: 10.1109/JSTARS.2021.3104230.
|
| [3] |
CHEN Kaiyan, WU Ming, LIU Jiaming, et al. FGSD: A dataset for fine-grained ship detection in high resolution satellite images[EB/OL]. https://arxiv. org/abs/2003.06832, 2020.
|
| [4] |
HAN Yaqi, LIAO Jingwen, LU Tianshu, et al. KCPNet: Knowledge-driven context perception networks for ship detection in infrared imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5000219. doi: 10.1109/TGRS.2022.3233401.
|
| [5] |
NIRGUDKAR S, DEFILIPPO M, SACARNY M, et al. MassMIND: Massachusetts maritime INfrared dataset[J]. The International Journal of Robotics Research, 2023, 42(1/2): 21–32. doi: 10.1177/02783649231153020.
|
| [6] |
TOET A. TNO image fusion dataset[EB/OL]. https://figshare.com/articles/dataset/TNO_Image_Fusion_Dataset/1008029, 2022.
|
| [7] |
JIA Xinyu, ZHU Chuang, LI Minzhen, et al. LLVIP: A visible-infrared paired dataset for low-light vision[C]. IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, Canada, 2021: 3489–3497. doi: 10.1109/ICCVW54120.2021.00389.
|
| [8] |
LI Yiming, LI Zhiheng, CHEN Nuo, et al. Multiagent multitraversal multimodal self-driving: Open MARS dataset[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2024: 22041–22051. doi: 10.1109/CVPR52733.2024.02081.
|
| [9] |
HWANG S, PARK J, KIM N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline[C]. The 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, USA, 2015: 1037–1045. doi: 10.1109/CVPR.2015.7298706.
|
| [10] |
苏丽, 崔世豪, 张雯. 基于改进暗通道先验的海上低照度图像增强算法[J]. 海军航空大学学报, 2024, 39(5): 576–586. doi: 10.7682/j.issn.2097-1427.2024.05.007.
SU Li, CUI Shihao, and ZHANG Wen. An algorithm for enhancing low-light images at sea based on improved dark channel priors[J]. Journal of Naval Aviation University, 2024, 39(5): 576–586. doi: 10.7682/j.issn.2097-1427.2024.05.007.
|
| [11] |
曾文锋, 李树山, 王江安. 基于仿射变换模型的图像配准中的平移、旋转和缩放[J]. 红外与激光工程, 2001, 30(1): 18–20, 17. doi: 10.3969/j.issn.1007-2276.2001.01.006.
ZENG Wenfeng, LI Shushan, and WANG Jiang’an. Translation, rotation and scaling changes in image registration based affine transformation model[J]. Infrared and Laser Engineering, 2001, 30(1): 18–20, 17. doi: 10.3969/j.issn.1007-2276.2001.01.006.
|
| [12] |
于乐凯, 曹政, 孙艳丽, 等. 海上舰船目标可见光/红外图像匹配方法[J]. 海军航空大学学报, 2024, 39(6): 755–764,772. doi: 10.7682/j.issn.2097-1427.2024.06.013.
YU Lekai, CAO Zheng, SUN Yanli, et al. Visible and infrared images matching method for maritime ship targets[J]. Journal of Naval Aviation University, 2024, 39(6): 755–764,772. doi: 10.7682/j.issn.2097-1427.2024.06.013.
|
| [13] |
GOYAL P, DOLLÁR P, GIRSHICK R, et al. Accurate, large minibatch SGD: Training ImageNet in 1 hour[EB/OL]. https://arxiv.org/abs/1706.02677, 2018.
|
| [14] |
FANG Qingyun, HAN Dapeng, WANG Zhaokui. Cross-modality fusion transformer for multispectral object detection[EB/OL]. https://arxiv.org/abs/2111.00273, 2022.
|
| [15] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: Optimal speed and accuracy of object detection[EB/OL]. https://arxiv.org/abs/2004.10934, 2020.
|
| [16] |
WANG Jinpeng, XU Cong’an, ZHAO Chunhui, et al. Multimodal object detection of UAV remote sensing based on joint representation optimization and specific information enhancement[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 12364–12373. doi: 10.1109/JSTARS.2024.3373816.
|
| [17] |
ZHANG Jiaqing, LEI Jie, XIE Weiying, et al. SuperYOLO: Super resolution assisted object detection in multimodal remote sensing imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5605415. doi: 10.1109/TGRS.2023.3258666.
|