Turn off MathJax
Article Contents
XIANG Yuming, BAI Zhida, CHEN Jinyang, et al. Research on automatic control point extraction and correction method for high-resolution synthetic aperture radar imagery assisted by multi-source data[J]. Journal of Radars, in press. doi: 10.12000/JR25141
Citation: XIANG Yuming, BAI Zhida, CHEN Jinyang, et al. Research on automatic control point extraction and correction method for high-resolution synthetic aperture radar imagery assisted by multi-source data[J]. Journal of Radars, in press. doi: 10.12000/JR25141

Research on Automatic Control Point Extraction and Correction Method for High-Resolution Synthetic Aperture Radar Imagery Assisted by Multi-source Data

DOI: 10.12000/JR25141 CSTR: 32380.14.JR25141
Funds:  National Natural Science Foundation of China (42221002, 42171432),Shanghai Science and Technology Program Project (2024CSJZN01300), Special Fund for Basic Scientific Research Business Expenses of Central Universities
More Information
  • Corresponding author: HONG Zhonghua
  • Available Online: 2025-11-24
  • Ground control points (GCPs) are essential for improving the positioning accuracy of remote sensing imagery. Their spatial distribution and geometric quality directly affect the reliability of orthorectification. GCPs serve as a critical foundation for ensuring the accuracy of multi-source image fusion, change detection, and quantitative inversion. However, traditional corner reflector deployment presents high costs and implementation difficulties, struggling to meet global application demands. Additionally, existing heterogeneous control points (such as optical imagery and laser altimetry data) exhibit significant modal differences relative to synthetic aperture radar (SAR) imagery, which affects their ability to balance accuracy and robustness. To address these challenges, this study proposes an automatic control point extraction method for high-resolution SAR imagery based on multi-source data. Furthermore, a high-precision orthorectification framework is established using control chips. The method leverages the characteristics of widely distributed pole-like artificial features in urban environments: these features exhibit a body–shadow collaborative structure in optical imagery and a cross-shaped strong scattering response in SAR imagery. First, open-source airport runway data are used to correct Google optical imagery, establishing a planar reference framework. Next, initial positioning optimization for stereo SAR images from ascending and descending orbits is achieved by jointly adjusting optical-SAR and stereo SAR image matching points. Finally, road and parking lot vector data are utilized to extract regions of interest, where strong scattering points are identified using a signal-to-clutter ratio detection algorithm. Three-dimensional spatial coordinates of control points are obtained via point target analysis and stereo positioning techniques. After correcting residual planar errors in stereo SAR images using control point coordinates, control chip data for ascending and descending orbit SAR images are generated. Validation experiments using GaoFen-3 SAR images from multiple regions show that the 3D positioning accuracy of control points extracted from spotlight mode stereo SAR imagery reaches the submeter level. Orthorectification of test images using extracted control points and control chips significantly improves positioning accuracy, as verified by corner reflectors and airborne LiDAR point cloud-based ground truth. Positioning errors are 1.78 pixels (spotlight mode), 1.09 pixels (ultrafine stripmap mode), and 0.82 pixels (fine stripmap mode), corresponding to improvements of 47.2%, 49.3%, and 37.4%, respectively, compared to traditional optical reference image matching correction methods. This study introduces crowdsourced information to assist SAR control point extraction and ascending/descending orbit SAR control chip construction, overcoming the accuracy limitations of optical reference image matching correction. The proposed method provides a scalable approach for high-precision positioning and joint processing of high-resolution SAR imagery.

     

  • loading
  • [1]
    仇晓兰, 胡玉新, 上官松涛, 等. 遥感卫星大数据高精度一体化处理技术[J]. 大数据, 2022, 8(2): 15–27. doi: 10.11959/j.issn.2096-0271.2022013.

    QIU Xiaolan, HU Yuxin, SHANGGUAN Songtao, et al. Remote sensing satellite big data high-precision integration processing technology[J]. Big Data Research, 2022, 8(2): 15–27. doi: 10.11959/j.issn.2096-0271.2022013.
    [2]
    向俞明, 滕飞, 王林徽, 等. 基于快速异源配准的高分辨率SAR影像海岛区域正射校正[J]. 雷达学报(中英文), 2024, 13(4): 866–884. doi: 10.12000/JR24022.

    XIANG Yuming, TENG Fei, WANG Linhui, et al. Orthorectification of high-resolution SAR images in island regions based on fast multimodal registration[J]. Journal of Radars, 2024, 13(4): 866–884. doi: 10.12000/JR24022.
    [3]
    EINEDER M, MINET C, STEIGENBERGER P, et al. Imaging geodesy—toward centimeter-level ranging accuracy with TerraSAR-X[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(2): 661–671. doi: 10.1109/TGRS.2010.2060264.
    [4]
    RAGGAM H, PERKO R, GUTJAHR K, et al. Accuracy assessment of 3D point retrieval from TerraSAR-X data sets[C]. 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
    [5]
    NITTI D O, MOREA A, NUTRICATO R, et al. Automatic GCP extraction with high resolution COSMO-SkyMed products[C]. SPIE 10003, SAR Image Analysis, Modeling, and Techniques XVI, Edinburgh, United Kingdom, 2016: 1000302. doi: 10.1117/12.2241281.
    [6]
    MONTAZERI S, GISINGER C, EINEDER M, et al. Automatic detection and positioning of ground control points using TerraSAR-X multiaspect acquisitions[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(5): 2613–2632. doi: 10.1109/TGRS.2017.2769078.
    [7]
    KRAUß T, KURZ F, and RUNGE H. Automatic pole detection in aerial and satellite imagery for precise image registration with SAR ground control points[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2022, V–1–2022: 85–91. doi: 1 0.5194/isprs-annals-V-1-2022-85-2022.
    [8]
    CHANDELIER L, COEURDEVEY L, BOSCH S, et al. A worldwide 3D GCP database inherited from 20 years of massive multi-satellite observations[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2020, V–2–2020: 15–23. doi: 10.5194/isprs-annals-V-2-2020-15-2020.
    [9]
    XI Mengrong, FENG Yongjiu, LEI Zhenkun, et al. Geometric calibration of large-scale SAR images using wind turbines as ground control points[J]. International Journal of Digital Earth, 2024, 17(1): 2385080. doi: 10.1080/17538947.2024.2385080.
    [10]
    王密, 韦钰, 杨博, 等. ICESat-2/ATLAS全球高程控制点提取与分析[J]. 武汉大学学报: 信息科学版, 2021, 46(2): 184–192. doi: 10.13203/j.whugis20200531.

    WANG Mi, WEI Yu, YANG Bo, et al. Extraction and analysis of global elevation control points from ICESat-2/ATLAS data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 184–192. doi: 10.13203/j.whugis20200531.
    [11]
    LI Binbin, XIE Huan, LIU Shijie, et al. A high-quality global elevation control point dataset from ICESat-2 altimeter data[J]. International Journal of Digital Earth, 2024, 17(1): 2361724. doi: 10.1080/17538947.2024.2361724.
    [12]
    余洋, 靳国旺, 熊新, 等. 多策略ATLAS数据优选与影像匹配相结合的SAR高程控制点提取[J]. 雷达学报, 2023, 12(1): 64–75. doi: 10.12000/JR22134.

    YU Yang, JIN Guowang, XIONG Xin, et al. SAR elevation control point extraction combining multistrategy ATLAS data preference and image matching[J]. Journal of Radars, 2023, 12(1): 64–75. doi: 10.12000/JR22134.
    [13]
    HUBER M, WESSEL B, and ROTH A. The TerraSAR-X orthorectification service and its benefit for land use applications[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 1922–1925. doi: 10.1109/IGARSS.2006.497.
    [14]
    MERKLE N, LUO Wenjie, AUER S, et al. Exploiting deep matching and SAR data for the geo-localization accuracy improvement of optical satellite images[J]. Remote Sensing, 2017, 9(6): 586. doi: 10.3390/rs9060586.
    [15]
    JIAO Niangang, WANG Feng, YOU Hongjian, et al. A generic framework for improving the geopositioning accuracy of multi-source optical and SAR imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 169: 377–388. doi: 10.1016/j.isprsjprs.2020.09.017.
    [16]
    CHENG Qian, WANG Taoyang, LI Xin, et al. Geometric positioning accuracy improvement method of micro SAR satellites with large positioning errors[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 14949–14964. doi: 10.1109/JSTARS.2024.3430847.
    [17]
    张祖勋, 段延松, 陶鹏杰. 从控制点到控制片[J]. 武汉大学学报: 信息科学版, 2023, 48(11): 1715–1723. doi: 10.13203/j.whugis20230373.

    ZHANG Zuxun, DUAN Yansong, and TAO Pengjie. From ground control point to digital control photo[J]. Geomatics and Information Science of Wuhan University, 2023, 48(11): 1715–1723. doi: 10.13203/j.whugis20230373.
    [18]
    XIANG Yuming, WANG Xuanqi, WANG Feng, et al. A global-to-local algorithm for high-resolution optical and SAR image registration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5215320. doi: 10.1109/TGRS.2023.3309855.
    [19]
    XIANG Yuming, JIAO Niangang, LIU Rui, et al. A geometry-aware registration algorithm for multiview high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5234818. doi: 10.1109/TGRS.2022.3205382.
    [20]
    GRODECKI J D and DIAL G. Block adjustment of high-resolution satellite images described by rational polynomials[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(1): 59–68. doi: 10.14358/PERS.69.1.59.
    [21]
    FRASER C S and HANLEY H B. Bias compensation in rational functions for IKONOS satellite imagery[J]. Photogrammetric Engineering & Remote Sensing, 2003, 69(1): 53–57. doi: 10.14358/PERS.69.1.53.
    [22]
    徐凯. 星载SAR高精度几何处理方法研究及应用[D]. [博士论文], 武汉大学, 2020. doi: 10.27379/d.cnki.gwhdu.2020.002502.

    XU Kai. Research on high precision geometric processing methods and application of spaceborne SAR[D]. [Ph.D. dissertation], Wuhan University, 2020. doi: 10.27379/d.cnki.gwhdu.2020.002502.
    [23]
    WANG Jian, CHAI Huiming, LI Xiaoshuai, et al. Improving mountainous DSM accuracy through an innovative opposite-side radargrammetry algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 6641–6653. doi: 10.1109/JSTARS.2025.3543430.
    [24]
    YE Yuanxin, ZHU Bai, TANG Tengfeng, et al. A robust multimodal remote sensing image registration method and system using steerable filters with first-and second-order gradients[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 188: 331–350. doi: 10.1016/j.isprsjprs.2022.04.011.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(23) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint