Turn off MathJax
Article Contents
LI Yihan, SHI Chenguang, LONG Fei, et al. Game theory-based joint optimization algorithm for UAV swarm task allocation and trajectory planning in phantom track deception[J]. Journal of Radars, in press. doi: 10.12000/JR25135
Citation: LI Yihan, SHI Chenguang, LONG Fei, et al. Game theory-based joint optimization algorithm for UAV swarm task allocation and trajectory planning in phantom track deception[J]. Journal of Radars, in press. doi: 10.12000/JR25135

Game Theory-based Joint Optimization Algorithm for UAV Swarm Task Allocation and Trajectory Planning in Phantom Track Deception

DOI: 10.12000/JR25135 CSTR: 32380.14.JR25135
Funds:  The National Natural Science Foundation of China (62271247), Natural Science Foundation of Jiangsu Province (BK20240181), National Aerospace Science Foundation of China (20220055052001), Qing Lan Project of Jiangsu Province, Innovation Fund for Distributed Collaborative Systems Engineering and Cluster Technology Research and Development Center (83312202302)
More Information
  • Corresponding author: SHI Chenguang, scg_space@163.com
  • Received Date: 2025-07-23
    Available Online: 2025-09-16
  • To address interruptions in phantom tracks caused by platform failures or damage during unmanned aerial vehicle (UAV) swarm deception operations against radar networks, this study proposes a game theory-based joint optimization algorithm for UAV swarm task allocation and trajectory planning. A decentralized swarm cooperation mechanism is designed to create a cooperative game model for UAV phantom track deception against radar networks. Based on the radar network homology test criterion, an optimization model is developed to maximize the utility function of the phantom track deception game, subject to constraints on UAV swarm kinematic performance and task allocation requirements. The existence and convergence of a Nash equilibrium are rigorously proven using exact potential game theory. To address the resulting non-convex, non-linear, mixed-integer optimization problem, an iterative algorithm is developed that combines distributed coalition game theory with a genetic algorithm. The simulation results demonstrate that, compared with existing approaches, the proposed algorithm effectively replans deception tasks and trajectories in response to platform failures or damage, thereby enhancing the continuity and effectiveness of phantom track generation against radar networks.

     

  • loading
  • [1]
    黄洁瑜, 谢军伟, 杨子晴, 等. 雷达资源管理技术发展研究综述[J]. 现代雷达, 2025, 47(3): 1–13. doi: 10.16592/j.cnki.1004-7859.20230626004.

    HUANG Jieyu, XIE Junwei, YANG Ziqing, et al. A review of radar resource management technology development research[J]. Modern Radar, 2025, 47(3): 1–13. doi: 10.16592/j.cnki.1004-7859.20230626004.
    [2]
    柏鹏, 王玉冰, 梁晓龙, 等. 无人机对雷达组网航迹欺骗综述[J]. 航空学报, 2020, 41(10): 023912. doi: 10.7527/S1000-6893.2020.23912.

    BAI Peng, WANG Yubing, LIANG Xiaolong, et al. Phantom track deception against radar networks using UAVs: Review[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 023912. doi: 10.7527/S1000-6893.2020.23912.
    [3]
    MAITHRIPALA D H A and JAYASURIYA S. Radar deception through phantom track generation[C]. 2005 American Control Conference, Portland, USA, 2005: 4102–4106. doi: 10.1109/ACC.2005.1470620.
    [4]
    MAITHRIPALA D H A, JAYASURIYA S, and MEARS M J. Phantom track generation through cooperative control of multiple ECAVs based on feasibility analysis[J]. Journal of Dynamic Systems, Measurement, and Control, 2007, 129(5): 708–715. doi: 10.1115/1.2764512.
    [5]
    DHANANJAY N, KUDUVALLI A, and GHOSE D. Realistic coherent phantom track generation by a group of electronic combat aerial vehicles[C]. 2013 American Control Conference, Washington, USA, 2013: 4642–4647. doi: 10.1109/ACC.2013.6580555.
    [6]
    MAITHRIPALA D H A and JAYASURIYA S. Phantom track generation in 3D through cooperative control of multiple ECAVs based on geometry[C]. First International Conference on Industrial and Information Systems, Tirtayasa, Indonesia, 2006: 255–260. doi: 10.1109/ICIIS.2006.365733.
    [7]
    LEE I H and BANG H. Phantom track generation using predictive control concept[C]. 11th International Conference on Control, Automation and Systems, Gyeonggi-do, Korea (South), 2011: 291–293.
    [8]
    PURVIS K B, ASTROM K J, and KHAMMASH M. Online control strategies for highly coupled cooperative UAVs[C]. 2007 American Control Conference, New York, USA, 2007: 3961–3966. doi: 10.1109/ACC.2007.4283125.
    [9]
    PURVIS K B and CHANDLER P R. A review of recent algorithms and a new and improved cooperative control design for generating a phantom track[C]. 2007 American Control Conference, New York, USA, 2007: 3252–3258. doi: 10.1109/ACC.2007.4283138.
    [10]
    王强. 针对组网雷达的自卫式航迹欺骗干扰技术[J]. 现代雷达, 2024, 46(12): 40–44. doi: 10.16592/j.cnki.1004-7859.2024.12.006.

    WANG Qiang. Self defense false track simulation technology for netted radar[J]. Modern Radar, 2024, 46(12): 40–44. doi: 10.16592/j.cnki.1004-7859.2024.12.006.
    [11]
    王布宏, 黄天奇, 田继伟. 针对自适应滤波的组网雷达欺骗干扰优化策略[J]. 国防科技大学学报, 2022, 44(2): 88–95. doi: 10.11887/j.cn.202202011.

    WANG Buhong, HUANG Tianqi, and TIAN Jiwei. Deception jamming optimization strategy against adaptive filtering for netted radar[J]. Journal of National University of Defense Technology, 2022, 44(2): 88–95. doi: 10.11887/j.cn.202202011.
    [12]
    郭中会, 李松松, 张宸宸, 等. 多机协同对组网雷达欺骗干扰的航迹优化[J]. 电子信息对抗技术, 2020, 35(1): 46–50,59. doi: 10.3969/j.issn.1674-2230.2020.01.010.

    GUO Zhonghui, LI Songsong, ZHANG Chenchen, et al. Track deception model optimization according to the track deception technology[J]. Electronic Information Warfare Technology, 2020, 35(1): 46–50,59. doi: 10.3969/j.issn.1674-2230.2020.01.010.
    [13]
    袁天, 陶建锋, 李兴成. 基于关联准则的主瓣航迹欺骗干扰方法[J]. 系统工程与电子技术, 2018, 40(2): 273–279. doi: 10.3969/j.issn.1001-506X.2018.02.06.

    YUAN Tian, TAO Jianfeng, and LI Xingcheng. Main lobe track deception jamming method based on association rule[J]. Systems Engineering and Electronics, 2018, 40(2): 273–279. doi: 10.3969/j.issn.1001-506X.2018.02.06.
    [14]
    WANG Yuanhang, ZHANG Tianxian, KONG Lingjiang, et al. Strategy optimization for range gate pull-off track-deception jamming under black-box circumstance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4262–4273. doi: 10.1109/TAES.2023.3241141.
    [15]
    MA Zhijie, ZHANG Tianxian, WANG Yuanhang, et al. Strategy optimization for range-velocity gate pull-off jamming[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 5017–5029. doi: 10.1109/TAES.2024.3514593.
    [16]
    蒋雯, 贾琼, 刘真, 等. 面向主被动雷达复合探测的全脉冲多机协同干扰方法[J/OL]. 雷达学报, (2025–05-22) [2025–08-15]. https://link.cnki.net/urlid/10.1030.TN.20250522.1127.002.

    JIANG Wen, JIA Qiong, LIU Zhen, et al. Full-pulse multi-jammer cooperative jamming method for active-passive radar composite detection[J/OL]. Journal of Radars, (2025–05-22) [2025–08-15]. https://link.cnki.net/urlid/10.1030.TN.20250522.1127.002.
    [17]
    许恒, 许红, 全英汇, 等. 基于时域编码超表面脉内-脉间编码优化的雷达干扰方法[J]. 雷达学报, 2024, 13(1): 215–226. doi: 10.12000/JR23186.

    XU Heng, XU Hong, QUAN Yinghui, et al. A radar jamming method based on time domain coding metasurface intrapulse and interpulse coding optimization[J]. Journal of Radars, 2024, 13(1): 215–226. doi: 10.12000/JR23186.
    [18]
    WANG Yuanhang, ZHANG Tianxian, KONG Lingjiang, et al. A stochastic simulation optimization-based range gate pull-off jamming method[J]. IEEE Transactions on Evolutionary Computation, 2023, 27(3): 580–594. doi: 10.1109/TEVC.2022.3175517.
    [19]
    时晨光, 闻雯, 宋海伟, 等. 针对组网雷达的无人机集群转发式欺骗干扰时延误差研究[J]. 航空兵器, 2024, 31(2): 131–137. doi: 10.12132/ISSN.1673-5048.2023.0143.

    SHI Chenguang, WEN Wen, SONG Haiwei, et al. Research on delay error of UAV swarm repeater deception jamming against networked radar[J]. Aero Weaponry, 2024, 31(2): 131–137. doi: 10.12132/ISSN.1673-5048.2023.0143.
    [20]
    时晨光, 蒋泽宇, 严牧, 等. 针对组网雷达的无人机集群航迹欺骗综合误差分析[J]. 电子与信息学报, 2024, 46(12): 4451–4458. doi: 10.11999/JEIT240289.

    SHI Chenguang, JIANG Zeyu, YAN Mu, et al. Comprehensive error in UAV cluster trajectory deception for networked radar[J]. Journal of Electronics & Information Technology, 2024, 46(12): 4451–4458. doi: 10.11999/JEIT240289.
    [21]
    班宏辉, 潘继飞, 王正, 等. 基于多无人机协同的航迹欺骗误差分析[J/OL]. 系统工程与电子技术, (2025–06-11) [2025-06-30]. https://link.cnki.net/urlid/11.2422.TN.20250611.1539.048.

    BAN Honghui, PAN Jifei, WANG Zheng, et al. Trajectory deception error analysis based on multi-UAV collaboration[J/OL]. Systems Engineering and Electronics, (2025-06-11) [2025-06-30]. https://link.cnki.net/urlid/11.2422.TN.20250611.1539.048.
    [22]
    BAN Honghui, PAN Jifei, WANG Zheng, et al. Error-constrained entropy-minimizing strategies for multi-UAV deception against networked radars[J]. Entropy, 2025, 27(6): 653. doi: 10.3390/e27060653.
    [23]
    柳向, 李东生. 对分布式组网雷达的航迹欺骗偏差补偿技术[J]. 系统工程与电子技术, 2018, 40(6): 1255–1264. doi: 10.3969/j.issn.1001-506X.2018.06.10.

    LIU Xiang and LI Dongsheng. Deviation compensation for phantom tracks jamming against distributed radar network[J]. Systems Engineering and Electronics, 2018, 40(6): 1255–1264. doi: 10.3969/j.issn.1001-506X.2018.06.10.
    [24]
    PURVIS K B, ASTROM K J, and KHAMMASH M. Estimation and optimal configurations for localization using cooperative UAVs[J]. IEEE Transactions on Control Systems Technology, 2008, 16(5): 947–958. doi: 10.1109/TCST.2007.916348.
    [25]
    WANG Yubing, WANG Weijia, ZHANG Xudong, et al. The joint phantom track deception and TDOA/FDOA localization using UAV swarm without prior knowledge of radars’ precise locations[J]. Electronics, 2022, 11(10): 1577. doi: 10.3390/electronics11101577.
    [26]
    林文斌, 时晨光, 严牧, 等. 面向欺骗干扰组网雷达的无人机集群稳健航迹规划算法[J/OL]. 系统工程与电子技术, (2025-05-23) [2025-06-30]. https://link.cnki.net/urlid/11.2422.tn.20250523.1041.041.

    LIN Wenbin, SHI Chenguang, YAN Mu, et al. Robust track planning algorithm for UAVs deceiving radar networks[J/OL]. Systems Engineering and Electronics, (2025-05-23) [2025-06-30]. https://link.cnki.net/urlid/11.2422.tn.20250523.1041.041.
    [27]
    ZHANG Tianxian, WANG Yuanhang, MA Zhijie, et al. Task assignment in UAV-enabled front jammer swarm: A coalition formation game approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 9562–9575. doi: 10.1109/TAES.2023.3323441.
    [28]
    HAI Xingshuo, FENG Qiang, CHEN Weike, et al. Capability-oriented decision-making in multi-UAV deployment and task allocation: A hierarchical game-based framework[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2025, 55(7): 4562–4574. doi: 10.1109/TSMC.2025.3551500.
    [29]
    LI Yibing, ZHANG Zitang, HE Zongyu, et al. A heuristic task allocation method based on overlapping coalition formation game for heterogeneous UAVs[J]. IEEE Internet of Things Journal, 2024, 11(17): 28945–28959. doi: 10.1109/JIOT.2024.3406336.
    [30]
    王跃东, 顾以静, 梁彦, 等. 伴随压制干扰与组网雷达功率分配的深度博弈研究[J]. 雷达学报, 2023, 12(3): 642–656. doi: 10.12000/JR23023.

    WANG Yuedong, GU Yijing, LIANG Yan, et al. Deep game of escorting suppressive jamming and networked radar power allocation[J]. Journal of Radars, 2023, 12(3): 642–656. doi: 10.12000/JR23023.
    [31]
    TONG Bingda and DUAN Haibin. A game theory-based approach for multiple UAVs cooperative target defense[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2024, 71(4): 2149–2153. doi: 10.1109/TCSII.2023.3333572.
    [32]
    QI Nan, HUANG Zanqi, ZHOU Fuhui, et al. A task-driven sequential overlapping coalition formation game for resource allocation in heterogeneous UAV networks[J]. IEEE Transactions on Mobile Computing, 2023, 22(8): 4439–4455. doi: 10.1109/TMC.2022.3165965.
    [33]
    CHEN Zhuoyue, YANG Yaozong, XU Jiajie, et al. Task offloading and resource pricing based on game theory in UAV-assisted edge computing[J]. IEEE Transactions on Services Computing, 2025, 18(1): 440–452. doi: 10.1109/TSC.2024.3512936.
    [34]
    TANG Xin, CHEN Qian, YU Rong, et al. Digital twin-empowered task assignment in aerial MEC network: A resource coalition cooperation approach with generative model[J]. IEEE Transactions on Network Science and Engineering, 2025, 12(1): 13–27. doi: 10.1109/TNSE.2024.3482327.
    [35]
    LI Jialiuyuan, SHI You, DAI Chen, et al. A learning-based stochastic game for energy efficient optimization of UAV trajectory and task offloading in space/aerial edge computing[J]. IEEE Transactions on Vehicular Technology, 2025, 74(6): 9717–9733. doi: 10.1109/TVT.2025.3540964.
    [36]
    CHEN Jiayi, KUANG Zhufang, ZHANG Yuhao, et al. Blockchain-enabled computing offloading and resource allocation in multi-UAVs MEC network: A Stackelberg Game learning approach[J]. IEEE Transactions on Information Forensics and Security, 2025, 20: 3632–3645. doi: 10.1109/TIFS.2025.3550812.
    [37]
    赵锋, 艾小锋, 刘进, 等. 组网雷达系统建模与仿真[M]. 北京: 电子工业出版社, 2018: 85–86. (查阅网上资料,未找到本条文献英文翻译,请确认).
    [38]
    BAR-SHALOM Y and LI Xiaorong. Multitarget-Multisensor Tracking: Principles and Techniques[M]. Danvers: Clearance Center, 1995: 95.
    [39]
    MONDERER D and SHAPLEY L S. Potential games[J]. Games and Economic Behavior, 1996, 14(1): 124–143. doi: 10.1006/game.1996.0044.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(16) PDF downloads(0) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint