Citation: | WANG Bohong, SHEN Biao, MU Wenxing, et al. An improved bat-inspired super-resolution algorithm for mechanical rotation polarimetric radar[J]. Journal of Radars, in press. doi: 10.12000/JR25113 |
[1] |
HEISENBERG W. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik[J]. Zeitschrift für Physik, 1927, 43(3): 172–198. doi: 10.1007/BF01397280.
|
[2] |
GABOR D. Theory of communication. Part 1: The analysis of information[J]. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 1946, 93(26): 429–441. doi: 10.1049/ji-3-2.1946.0074.
|
[3] |
FOLLAND G B and SITARAM A. The uncertainty principle: a mathematical survey[J]. Journal of Fourier Analysis and Applications, 1997, 3(3): 207–238. doi: 10.1007/BF02649110.
|
[4] |
NAMIAS V. The fractional order Fourier transform and its application to quantum mechanics[J]. IMA Journal of Applied Mathematics, 1980, 25(3): 241–265. doi: 10.1093/imamat/25.3.241.
|
[5] |
ALMEIDA L B. The fractional Fourier transform and time-frequency representations[J]. IEEE Transactions on Signal Processing, 1994, 42(11): 3084–3091. doi: 10.1109/78.330368.
|
[6] |
MOSHINSKY M and QUESNE C. Linear canonical transformations and their unitary representations[J]. Journal of Mathematical Physics, 1971, 12(8): 1772–1780. doi: 10.1063/1.1665805.
|
[7] |
DAUBECHIES I. The wavelet transform, time-frequency localization and signal analysis[J]. IEEE Transactions on Information Theory, 1990, 36(5): 961–1005. doi: 10.1109/18.57199.
|
[8] |
ELAD M and BRUCKSTEIN A M. A generalized uncertainty principle and sparse representation in pairs of bases[J]. IEEE Transactions on Information Theory, 2002, 48(9): 2558–2567. doi: 10.1109/TIT.2002.801410.
|
[9] |
DONOHO D L and STARK P B. Uncertainty principles and signal recovery[J]. SIAM Journal on Applied Mathematics, 1989, 49(3): 906–931. doi: 10.1137/0149053.
|
[10] |
KUMARESAN R and TUFTS D. Estimating the parameters of exponentially damped sinusoids and pole-zero modeling in noise[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1982, 30(6): 833–840. doi: 10.1109/TASSP.1982.1163974.
|
[11] |
STOICA P and SELEN Y. Model-order selection: A review of information criterion rules[J]. IEEE Signal Processing Magazine, 2004, 21(4): 36–47. doi: 10.1109/MSP.2004.1311138.
|
[12] |
倪晋麟, 储晓彬, 林幼权. 基于去卷积距离超分辨方法的机理及限制条件[J]. 系统工程与电子技术, 2000, 22(3): 62–64. doi: 10.3321/j.issn:1001-506X.2000.03.019.
NI Jinlin, CHU Xiaobin, and LIN Youquan. The principle and limitation of the range super-resolution algorithms based on deconvolution[J]. Systems Engineering and Electronics, 2000, 22(3): 62–64. doi: 10.3321/j.issn:1001-506X.2000.03.019.
|
[13] |
王永良. 空间谱估计理论与算法[M]. 北京: 清华大学出版社, 2004: 18–52, 306–336.
WANG Yongliang. Space Spectral Estimation Theory and Algorithms[M]. Beijing: Tsinghua University Press, 2004: 18–52, 306–336.
|
[14] |
郑昱. 复杂相关信号的DOA估计方法研究[D]. [博士论文], 哈尔滨工程大学, 2021. doi: 10.27060/d.cnki.ghbcu.2021.002074.
ZHENG Yu. Research on DOA estimation methods for complicated correlated signals[D]. [Ph.D. dissertation], Harbin Engineering University, 2021. doi: 10.27060/d.cnki.ghbcu.2021.002074.
|
[15] |
KIM K T, SEO D K, and KIM H T. Efficient radar target recognition using the MUSIC algorithm and invariant features[J]. IEEE Transactions on Antennas and Propagation, 2002, 50(3): 325–337. doi: 10.1109/8.999623.
|
[16] |
代大海, 王雪松, 肖顺平, 等. 全极化散射中心提取与参数估计: P-MUSIC方法[J]. 信号处理, 2007, 23(6): 818–822. doi: 10.3969/j.issn.1003-0530.2007.06.005.
DAI Dahai, WANG Xuesong, XIAO Shunping, et al. Fully polarized scattering center extraction and parameter estimation: P-MUSIC algorithm[J]. Journal of Signal Processing, 2007, 23(6): 818–822. doi: 10.3969/j.issn.1003-0530.2007.06.005.
|
[17] |
LI Liang, ZHANG Xiaoling, SHI Jun, et al. Range direction focusing method based on single-snap MUSIC for SAR imaging[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1195–1200, doi: 10.1109/RADAR.2018.8378732.
|
[18] |
KONG Lingyu, HE Xiaoyu, and XU Xiaojian. A fully-polarized unitary MUSIC for polarimetric SAR tomography[C]. 2019 International Conference on Electromagnetics in Advanced Applications, Granada, Spain, 2019: 0964–0967. doi: 10.1109/ICEAA.2019.8879343.
|
[19] |
SCHMIDT R. Multiple emitter location and signal parameter estimation[J]. IEEE Transactions on Antennas and Propagation, 1986, 34(3): 276–280. doi: 10.1109/TAP.1986.1143830.
|
[20] |
ROY R and KAILATH T. ESPRIT-estimation of signal parameters via rotational invariance techniques[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1989, 37(7): 984–995. doi: 10.1109/29.32276.
|
[21] |
DAI Dahai, WANG Xuesong, CHANG Yuliang, et al. Fully-polarized scattering center extraction and parameter estimation: P-ESPRIT algorithm[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4. doi: 10.1109/ICR.2006.343293.
|
[22] |
DING Shanshan, TONG Ningning, ZHANG Yongshun, et al. Super-resolution 3D imaging in MIMO radar using spectrum estimation theory[J]. IET Radar, Sonar & Navigation, 2017, 11(2): 304–312. doi: 10.1049/iet-rsn.2016.0233.
|
[23] |
陈希信. 基于LFM信号频域去斜和压缩感知的雷达距离超分辨[J]. 现代雷达, 2022, 44(12): 70–73. doi: 10.16592/j.cnki.1004-7859.2022.12.010.
CHEN Xixin. Radar range super-resolution based on LFM frequency dechirp and compressive sensing[J]. Modern Radar, 2022, 44(12): 70–73. doi: 10.16592/j.cnki.1004-7859.2022.12.010.
|
[24] |
WEI Shunjun, ZHOU Zichen, WANG Mou, et al. 3DRIED: A high-resolution 3-D millimeter-wave radar dataset dedicated to imaging and evaluation[J]. Remote Sensing, 2021, 13(17): 3366. doi: 10.3390/rs13173366.
|
[25] |
康乐, 张群, 李涛泳, 等. 基于贝叶斯学习的下视三维合成孔径雷达成像方法[J]. 光学学报, 2017, 37(6): 0611003. doi: 10.3788/AOS201737.0611003.
KANG Le, ZHANG Qun, LI Taoyong, et al. Imaging method of downward-looking three-dimensional synthetic aperture radar based on Bayesian learning[J]. Acta Optica Sinica, 2017, 37(6): 0611003. doi: 10.3788/AOS201737.0611003.
|
[26] |
SIMMONS J A, FERRAGAMO M, MOSS C F, et al. Discrimination of jittered sonar echoes by the echolocating bat, Eptesicus fuscus: The shape of target images in echolocation[J]. Journal of Comparative Physiology A, 1990, 167(5): 589–616. doi: 10.1007/BF00192654.
|
[27] |
SIMMONS J A, SAILLANT P A, WOTTON J M, et al. Composition of biosonar images for target recognition by echolocating bats[J]. Neural Networks, 1995, 8(7/8): 1239–1261. doi: 10.1016/0893-6080(95)00059-3.
|
[28] |
SCHMIDT S. Perception of structured phantom targets in the echolocating bat, Megaderma lyra[J]. The Journal of the Acoustical Society of America, 1992, 91(4): 2203–2223. doi: 10.1121/1.403654.
|
[29] |
成彬彬. 自适应雷达波形的仿生处理研究[D]. [博士论文], 清华大学, 2009.
CHENG Binbin. Research on bionic processing for auto-adaptive radar waveform[D]. [Ph.D. dissertation], Tsinghua University, 2009.
|
[30] |
杨琳. 镫骨、耳蜗及其Corti器的建模与生物力学研究[D]. [博士论文], 复旦大学, 2009: 17–34. doi: 10.7666/d.y1970550.
YANG Lin. Modeling and biomechanical analysis of the stapes, cochlea and organ of Corti[D]. [Ph.D. dissertation], Fudan University, 2009: 17–34. doi: 10.7666/d.y1970550.
|
[31] |
秦晓瑜. 基于听觉仿生的听觉谱生成方法研究[D]. [硕士论文], 东北师范大学, 2013: 1–18.
QIN Xiaoyu. Study on the generation method of auditory spectrum based on auditory bionics[D]. [Master dissertation], Northeast Normal University, 2013: 1–18.
|
[32] |
BALLERI A, GRIFFITHS H, and BAKER C. Biologically-Inspired Radar and Sonar: Lessons from Nature[M]. Edison: SciTech Publishing, 2017: 1–81.
|
[33] |
CHI T, RU Powen, and SHAMMA S A. Multiresolution spectrotemporal analysis of complex sounds[J]. The Journal of the Acoustical Society of America, 2005, 118(2): 887–906. doi: 10.1121/1.1945807.
|
[34] |
VANDERELST D, STECKEL J, BOEN A, et al. Place recognition using batlike sonar[J]. eLife, 2016, 5: e14188. doi: 10.7554/eLife.14188.
|
[35] |
CIGANOVIĆ N, WARREN R L, KEÇELI B, et al. Static length changes of cochlear outer hair cells can tune low-frequency hearing[J]. PLoS Computational Biology, 2018, 14(1): e1005936. doi: 10.1371/journal.pcbi.1005936.
|
[36] |
HOLDERIED M W, BAKER C J, VESPE M, et al. Understanding signal design during the pursuit of aerial insects by echolocating bats: Tools and applications[J]. Integrative and Comparative Biology, 2008, 48(1): 74–84. doi: 10.1093/icb/icn035.
|
[37] |
SAILLANT P A, SIMMONS J A, DEAR S P, et al. A computational model of echo processing and acoustic imaging in frequency-modulated echolocating bats: The spectrogram correlation and transformation receiver[J]. The Journal of the Acoustical Society of America, 1993, 94(5): 2691–2712. doi: 10.1121/1.407353.
|
[38] |
SIMMONS J A, SAILLANT P A, FERRAGAMO M J, et al. Auditory computations for biosonar target imaging in bats[M]. HAWKINS H L, MCMULLEN T A, POPPER A N, et al. Auditory Computation. New York: Springer, 1996: 401–468. doi: 10.1007/978-1-4612-4070-9_9.
|
[39] |
PEREMANS H and HALLAM J. The spectrogram correlation and transformation receiver, revisited[J]. The Journal of the Acoustical Society of America, 1998, 104(2): 1101–1110. doi: 10.1121/1.423326.
|
[40] |
MATSUO I, KUNUGIYAMA K, and YANO M. An echolocation model for range discrimination of multiple closely spaced objects: Transformation of spectrogram into the reflected intensity distribution[J]. The Journal of the Acoustical Society of America, 2004, 115(2): 920–928. doi: 10.1121/1.1642626.
|
[41] |
MATSUO I and YANO M. An echolocation model for the restoration of an acoustic image from a single-emission echo[J]. The Journal of the Acoustical Society of America, 2004, 116(6): 3782–3788. doi: 10.1121/1.1811411.
|
[42] |
WIEGREBE L. An autocorrelation model of bat sonar[J]. Biological Cyber-Netics, 2008, 98(6): 587–595. doi: 10.1007/s00422-008-0216-2.
|
[43] |
PARK M and ALLEN R. Pattern-matching analysis of fine echo delays by the spectrogram correlation and transformation receiver[J]. The Journal of the Acoustical Society of America, 2010, 128(3): 1490–1500. doi: 10.1121/1.3466844.
|
[44] |
SIMON R, KNÖRNSCHILD M, TSCHAPKA M, et al. Biosonar resolving power: Echo-acoustic perception of surface structures in the submillimeter range[J]. Frontiers in Physiology, 2014, 5: 64. doi: 10.3389/fphys.2014.00064.
|
[45] |
苏梦娜, 梁红, 杨长生. 基于SCAT模型的水下多目标高分辨仿生成像方法[J]. 水下无人系统学报, 2019, 27(2): 189–193. doi: 10.11993/j.issn.2096-1509.2019.02.010.
SU Mengna, LIANG Hong, and YANG Changsheng. Bionic imaging of underwater multiple targets with high resolution based on SCAT model[J]. Journal of Unmanned Undersea Systems, 2019, 27(2): 189–193. doi: 10.11993/j.issn.2096-1509.2019.02.010.
|
[46] |
CHEN Ming, BATES M E, and SIMMONS J A. How frequency hopping suppresses pulse-echo ambiguity in bat biosonar[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(29): 17288–17295. doi: 10.1073/pnas.2001105117.
|
[47] |
CHEN Ming, HARO S, SIMMONS A M, et al. A comprehensive computational model of animal biosonar signal processing[J]. PLoS Computational Biology, 2021, 17(2): e1008677. doi: 10.1371/journal.pcbi.1008677.
|
[48] |
GEORGIEV K, BALLERI A, STOVE A, et al. Baseband version of the bat-inspired spectrogram correlation and transformation receiver[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1–6. doi: 10.1109/RADAR.2016.7485152.
|
[49] |
GEORGIEV K, BALLERI A, STOVE A, et al. Bio-inspired two target resolution at radio frequencies[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 0436–0440. doi: 10.1109/RADAR.2017.7944242.
|
[50] |
GEORGIEV K, BALLERI A, STOVE A, et al. Bio-inspired processing of radar target echoes[J]. IET Radar, Sonar & Navigation, 2018, 12(12): 1402–1409. doi: 10.1049/iet-rsn.2018.5241.
|
[51] |
GEORGIEV K. Exploiting the phase of a bio-inspired receiver[J]. 2021 IEEE Radar Conference, Atlanta, USA, 2021: 1–6, doi: 10.1109/RadarConf2147009.2021.9454987.
|
[52] |
王博弘, 申彪, 穆文星, 等. 基于蝙蝠谱相关及变换模型的雷达目标超分辨方法研究[J]. 雷达学报(中英文), 2025, 14(2): 293–308. doi: 10.12000/JR24239.
WANG Bohong, SHEN Biao, MU Wenxing, et al. Research on super-resolution methods for radar targets based on bat-inspired spectrogram correlation and transformation models[J]. Journal of Radars, 2025, 14(2): 293–308. doi: 10.12000/JR24239.
|
[53] |
赵春雷, 王亚梁, 阳云龙, 等. 雷达极化信息获取及极化信号处理技术研究综述[J]. 雷达学报, 2016, 5(6): 620–638. doi: 10.12000/JR16092.
ZHAO Chunlei, WANG Yaliang, YANG Yunlong, et al. Review of radar polarization information acquisition and polarimetric signal processing techniques[J]. Journal of Radars, 2016, 5(6): 620–638. doi: 10.12000/JR16092.
|
[54] |
邢孟道, 谢意远, 高悦欣, 等. 电磁散射特征提取与成像识别算法综述[J]. 雷达学报, 2022, 11(6): 921–942. doi: 10.12000/JR22232.
XING Mengdao, XIE Yiyuan, GAO Yuexin, et al. Electromagnetic scattering characteristic extraction and imaging recognition algorithm: A review[J]. Journal of Radars, 2022, 11(6): 921–942. doi: 10.12000/JR22232.
|
[55] |
韩静雯, 杨勇, 连静, 等. 基于极化与距离像特征融合的雷达导引头角反射器鉴别方法[J]. 系统工程与电子技术, 2024, 46(11): 3658–3670. doi: 10.12305/j.issn.1001-506X.2024.11.08.
HAN Jingwen, YANG Yong, LIAN Jing, et al. Identification method of corner reflector based on polarization and HRRP feature fusion for radar seeker[J]. Systems Engineering and Electronics, 2024, 46(11): 3658–3670. doi: 10.12305/j.issn.1001-506X.2024.11.08.
|
[56] |
LIU Tao, YANG Ziyuan, GAO Gui, et al. A general framework of polarimetric detectors based on quadratic optimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5237418. doi: 10.1109/TGRS.2022.3217336.
|
[57] |
LIU Tao, ZHANG Jiafeng, GAO Gui, et al. CFAR ship detection in polarimetric synthetic aperture radar images based on whitening filter[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 58–81. doi: 10.1109/TGRS.2019.2931353.
|
[58] |
WANG Luoshengbin, XU Zhenhai, DONG Wei, et al. A scheme of polarimetric superresolution for multitarget detection and localization[J]. IEEE Signal Processing Letters, 2021, 28: 439–443. doi: 10.1109/LSP.2021.3058007.
|
[59] |
王罗胜斌, 王雪松, 徐振海. 雷达极化域调控超分辨的原理与方法[J]. 中国科学: 信息科学, 2023, 53(5): 993–1007. doi: 10.1360/SSI-2022-0141.
WANG Luoshengbin, WANG Xuesong, and XU Zhenhai. Principle and approach to polarization modulation for radar super-resolution[J]. SCIENTIA SINICA Informationis, 2023, 53(5): 993–1007. doi: 10.1360/SSI-2022-0141.
|
[60] |
HUYNEN J R. Measurement of the target scattering matrix[J]. Proceedings of the IEEE, 1965, 53(8): 936–946. doi: 10.1109/PROC.1965.4072.
|
[61] |
GIULI D, FOSSI M, and FACHERIS L. Radar target scattering matrix measurement through orthogonal signals[J]. IEE Proceedings F (Radar and Signal Processing), 1993, 140(4): 233–242. doi: 10.1049/ip-f-2.1993.0033.
|
[62] |
GIULI D, FACHERIS L, FOSSI M, et al. Simultaneous scattering matrix measurement through signal coding[C]. IEEE International Conference on Radar, Arlington, USA, 1990: 258–262. doi: 10.1109/RADAR.1990.201173.
|
[63] |
WANG Xuesong, LI Yongzhen, DAI Huanyao, et al. Research on instantaneous polarization radar system and external experiment[J]. Chinese Science Bulletin, 2010, 55(15): 1560–1567. doi: 10.1007/s11434-010-3102-y.
|
[64] |
SANTALLA V and ANTAR Y M M. A comparison between different polarimetric measurement schemes[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(5): 1007–1017. doi: 10.1109/TGRS.2002.1010888.
|
[65] |
WANG Fulai, LI Chao, PANG Chen, et al. A method for estimating the polarimetric scattering matrix of moving target for simultaneous fully polarimetric radar[J]. Sensors, 2018, 18(5): 1418. doi: 10.3390/s18051418.
|
[66] |
SOUYRIS J C, IMBO P, FJØRTOFT R, et al. Compact polarimetry based on symmetry properties of geophysical media: The π/4 mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 634–646. doi: 10.1109/TGRS.2004.842486.
|
[67] |
SIMMONS A J. Phase shift by periodic loading of waveguide and its application to broad-band circular polarization[J]. IEEE Transactions on Microwave Theory and Techniques, 1955, 3(6): 18–21. doi: 10.1109/TMTT.1955.1124986.
|
[68] |
BERTIN G, PIOVANO B, ACCATINO L, et al. Full-wave design and optimization of circular waveguide polarizers with elliptical irises[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(4): 1077–1083. doi: 10.1109/22.993409.
|
[69] |
WU Tekao. Meander-line polarizer for arbitrary rotation of linear polarization[J]. IEEE Microwave and Guided Wave Letters, 1994, 4(6): 199–201. doi: 10.1109/75.294292.
|
[70] |
ANG T W and CHAN K K. A broadband wide angle variable linear polarization rotator[C]. 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), Orlando, USA, 2013: 2229–2230. doi: 10.1109/APS.2013.6711773.
|
[71] |
GUO Lu, TAN P K, and CHIO T H. A simple method to realize polarization diversity in broadband reflectarrays using single-layered rectangular patch elements[C]. 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, Canada, 2015: 2161–2162. doi: 10.1109/APS.2015.7305469.
|
[72] |
LI Yongjiu and LI Long. Polarization diversity converter based on multilayer frequency selective surfaces[C]. 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Vancouver, Canada, 2015: 2401–2402. doi: 10.1109/APS.2015.7305589.
|
[73] |
QIN Nan and GUO Lu. On the use of metallic polarization conversion element with continuous 360° phase for high- efficiency all-metal planar folded reflectarrays[J]. IEEE Antennas and Wireless Propagation Letters, 2024, 23(6): 1859–1863. doi: 10.1109/LAWP.2024.3371591.
|
[74] |
SHEN Biao, LIU Tao, GAO Gui, et al. A low-cost polarimetric radar system based on mechanical rotation and its signal processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(2): 4744–4765. doi: 10.1109/TAES.2024.3507776.
|
[75] |
SHEN Biao, LIU Tao, LIU Weijian, et al. Polarimetric measurement methods for mechanical rotation polarimetric radar system in multiple-target scenarios[J]. IEEE Transactions on Aerospace and Electronic Systems, doi: 10.1109/TAES.2025.3580390.
|
[76] |
WILLIAMS R T, PRASAD S, MAHALANABIS A K, et al. An improved spatial smoothing technique for bearing estimation in a multipath environment[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1988, 36(4): 425–432. doi: 10.1109/29.1546.
|