Citation: | ZHOU Yating, ZHOU Yongsheng, XUE Qinghua, et al. An active jammer-based adversarial attack method against SAR automatic target recognition[J]. Journal of Radars, in press. doi: 10.12000/JR25110 |
[1] |
SZEGEDY C, ZAREMBA W, SUTSKEVER I, et al. Intriguing properties of neural networks[C]. The 2nd International Conference on Learning Representations, Banff, Canada, 2014. doi: 10.48550/arXiv.1312.6199.
|
[2] |
陈岳峰, 毛潇锋, 李裕宏, 等. AI安全——对抗样本技术综述与应用[J]. 信息安全研究, 2019, 5(11): 1000–1007. doi: 10.3969/j.issn.2096-1057.2019.11.009.
CHEN Yuefeng, MAO Xiaofeng, LI Yuhong, et al. AI security—research and application on adversarial example[J]. Journal of Information Security Research, 2019, 5(11): 1000–1007. doi: 10.3969/j.issn.2096-1057.2019.11.009.
|
[3] |
GOODFELLOW I J, SHLENS J, and SZEGEDY C. Explaining and harnessing adversarial examples[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015. doi: 10.48550/arXiv.1412.6572.
|
[4] |
CHEN Pinyu, ZHANG Huan, SHARMA Y, et al. ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models[C]. The 10th ACM Workshop on Artificial Intelligence and Security, Dallas, USA, 2017: 15–26. doi: 10.1145/3128572.3140448.
|
[5] |
BROWN T B, MANÉ D, ROY A, et al. Adversarial patch[EB/OL]. https://arxiv.org/abs/1712.09665, 2018.
|
[6] |
DUAN Ranjie, MA Xingjun, WANG Yisen, et al. Adversarial camouflage: Hiding physical-world attacks with natural styles[C]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA, 2020: 997–1005. doi: 10.1109/CVPR42600.2020.00108.
|
[7] |
阮航, 崔家豪, 毛秀华, 等. SAR目标识别对抗攻击综述: 从数字域迈向物理域[J]. 雷达学报, 2024, 13(6): 1298–1326. doi: 10.12000/JR24142.
RUAN Hang, CUI Jiahao, MAO Xiuhua, et al. A survey of adversarial attacks on SAR target recognition: From digital domain to physical domain[J]. Journal of Radars, 2024, 13(6): 1298–1326. doi: 10.12000/JR24142.
|
[8] |
万烜申, 刘伟, 牛朝阳, 等. 基于动量迭代快速梯度符号的SAR-ATR深度神经网络黑盒攻击算法[J]. 雷达学报, 2024, 13(3): 714–729. doi: 10.12000/JR23220.
WAN Xuanshen, LIU Wei, NIU Chaoyang, et al. Black-box attack algorithm for SAR-ATR deep neural networks based on MI-FGSM[J]. Journal of Radars, 2024, 13(3): 714–729. doi: 10.12000/JR23220.
|
[9] |
ZHOU Jie, PENG Bo, XIE Jianyue, et al. Conditional random field-based adversarial attack against SAR target detection[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4004505. doi: 10.1109/LGRS.2024.3365788.
|
[10] |
DUAN Jiale, QIU Linyao, HE Guangjun, et al. A region-adaptive local perturbation-based method for generating adversarial examples in synthetic aperture radar object detection[J]. Remote Sensing, 2024, 16(6): 997. doi: 10.3390/rs16060997.
|
[11] |
DANG Xunwang, YAN Hua, HU Liping, et al. SAR image adversarial samples generation based on parametric model[C]. 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, 2021: 1–3. doi: 10.1109/ICMMT52847.2021.9618140.
|
[12] |
PENG Bowen, PENG Bo, ZHOU Jie, et al. Scattering model guided adversarial examples for SAR target recognition: Attack and defense[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5236217. doi: 10.1109/TGRS.2022.3213305.
|
[13] |
YE Tian, KANNAN R, PRASANNA V, et al. Realistic scatterer based adversarial attacks on SAR image classifiers[C]. 2023 IEEE International Radar Conference (RADAR), Sydney, Australia, 2023: 1–6. doi: 10.1109/RADAR54928.2023.10371090.
|
[14] |
ZHOU Junfan, FENG Sijia, SUN Hao, et al. Attributed scattering center guided adversarial attack for DCNN SAR target recognition[J]. IEEE Geoscience and Remote Sensing Letters, 2023, 20: 4001805. doi: 10.1109/LGRS.2023.3235051.
|
[15] |
ZHANG Fan, YU Yameng, MA Fei, et al. A physically realizable adversarial attack method against SAR target recognition model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 11943–11957. doi: 10.1109/JSTARS.2024.3420690.
|
[16] |
LIU Zhe, XIA Weijie, and LEI Yongzhen. SAR-GPA: SAR generation perturbation algorithm[C]. The 3rd International Conference on Advanced Information Science and System, Sanya, China, 2021: 83. doi: 10.1145/3503047.3503136.
|
[17] |
XIA Weijie, LIU Zhe, and LI Yi. SAR-PeGA: A generation method of adversarial examples for SAR image target recognition network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1910–1920. doi: 10.1109/TAES.2022.3206261.
|
[18] |
XIE Jianyue, PENG Bo, LU Zhengzhi, et al. MIGAA: A physical adversarial attack method against SAR recognition models[C]. 2024 9th International Conference on Computer and Communication Systems (ICCCS), Xi’an, China, 2024: 309–314. doi: 10.1109/ICCCS61882.2024.10602913.
|
[19] |
CUI Jiahao, GUO Wang, SHAO Run, et al. Physics-oriented adversarial attacks on SAR image target recognition[C]. The Second Workshop on New Frontiers in Adversarial Machine Learning, 2023.
|
[20] |
LUO Binyan, CAO Hang, CUI Jiahao, et al. SAR-PATT: A physical adversarial attack for SAR image automatic target recognition[J]. Remote Sensing, 2024, 17(1): 21. doi: 10.3390/rs17010021.
|
[21] |
LIU Wei, WAN Xuanshen, NIU Chaoyang, et al. Template-based universal adversarial attack for synthetic aperture radar automatic target recognition network[J]. IET Radar, Sonar & Navigation, 2025, 19(1): e12691. doi: 10.1049/rsn2.12691.
|
[22] |
徐沙, 黄和国, 张夫龙. 反导雷达新进展及有源干扰技术需求分析[J]. 航天电子对抗, 2016, 32(2): 54–57. doi: 10.16328/j.htdz8511.2016.02.015.
XU Sha, HUANG Heguo, and ZHANG Fulong. New progress in anti-missile radar and active jamming techniques requirement[J]. Aerospace Electronic Warfare, 2016, 32(2): 54–57. doi: 10.16328/j.htdz8511.2016.02.015.
|
[23] |
Franceschetti G, Migliaccio M, Riccio D, et al. SARAS: A synthetic aperture radar (SAR) raw signal simulator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 30(1): 110–123. doi: 10.1109/36.124221.
|
[24] |
张皓宇, 邢世其. SAR有源干扰对抗仿真软件设计与实现[J]. 舰船电子对抗, 2023, 46(6): 102–110,120. doi: 10.16426/j.cnki.jcdzdk.2023.06.019.
ZHANG Haoyu and XING Shiqi. Design and implementation of active jamming countermeasure simulation software to SAR[J]. Shipboard Electronic Countermeasure, 2023, 46(6): 102–110,120. doi: 10.16426/j.cnki.jcdzdk.2023.06.019.
|
[25] |
王雪松, 刘建成, 张文明, 等. 间歇采样转发干扰的数学原理[J]. 中国科学E辑: 信息科学, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007.
WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematical principles of intermittent sampling repeater jamming[J]. Science in China Ser. E Information Sciences, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007.
|
[26] |
吴晓芳, 代大海, 王雪松, 等. 基于微动调制的SAR新型有源干扰方法[J]. 电子学报, 2010, 38(4): 954–959.
WU Xiaofang, DAI Dahai, WANG Xuesong, et al. A novel method of active jamming for SAR based on micro motion modulation[J]. Acta Electronica Sinica, 2010, 38(4): 954–959.
|
[27] |
胡东辉, 吴一戎. 合成孔径雷达散射波干扰研究[J]. 电子学报, 2002, 30(12): 1882–1884. doi: 10.3321/j.issn:0372-2112.2002.12.040.
HU Donghui and WU Yirong. The scatter-wave jamming to SAR[J]. Acta Electronica Sinica, 2002, 30(12): 1882–1884. doi: 10.3321/j.issn:0372-2112.2002.12.040.
|
[28] |
王宏艳, 降佳伟, 蒲娟, 等. 基于余弦幅度加权的低旁瓣多相位分段调制干扰方法[J]. 系统工程与电子技术, 2021, 43(11): 3185–3193. doi: 10.12305/j.issn.1001-506X.2021.11.18.
WANG Hongyan, JIANG Jiawei, PU Juan, et al. Multiple phases sectionalized modulation jamming method with low sidelobe based on cosine amplitude weighting[J]. Systems Engineering and Electronics, 2021, 43(11): 3185–3193. doi: 10.12305/j.issn.1001-506X.2021.11.18.
|
[29] |
伊志勇, 王鸿. 复杂电磁环境下雷达有源干扰机的设计与实现[J]. 应用科技, 2017, 44(2): 84–88. doi: 10.11991/yykj.201608013.
YI Zhiyong and WANG Hong. Design and implementation of radar active jammer in complex electromagnetic environment[J]. Computing Magazine of the CCF, 2017, 44(2): 84–88. doi: 10.11991/yykj.201608013.
|
[30] |
汪丙南, 张帆, 向茂生. 基于混合域的SAR回波快速算法[J]. 电子与信息学报, 2011, 33(3): 690–695. doi: 10.3724/SP.J.1146.2010.00555.
WANG Bingnan, ZHANG Fan, and XIANG Maosheng. SAR raw signal fast algorithm in mixed domain[J]. Journal of Electronics & Information Technology, 2011, 33(3): 690–695. doi: 10.3724/SP.J.1146.2010.00555.
|
[31] |
金啸宇, 尹嫱, 倪军, 等. 一种基于场景合成和锚点约束的SAR目标检测网络[J]. 南京信息工程大学学报: 自然科学版, 2020, 12(2): 210–215. doi: 10.13878/j.cnki.jnuist.2020.02.008.
JIN Xiaoyu, YIN Qiang, NI Jun, et al. SAR target detection network based on scenario synthesis and anchor constraint[J]. Journal of Nanjing University of Information Science and Technology: Natural Science Edition, 2020, 12(2): 210–215. doi: 10.13878/j.cnki.jnuist.2020.02.008.
|
[32] |
STORN R and PRICE K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359. doi: 10.1023/A:1008202821328.
|
[33] |
ZHANG Fan, MENG Tianying, XIANG Deliang, et al. Adversarial deception against SAR target recognition network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 4507–4520. doi: 10.1109/JSTARS.2022.3179171.
|
[34] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. The 3rd International Conference on Learning Representations, San Diego, USA, 2015. doi: 10.48550/arXiv.1409.1556.
|
[35] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[36] |
HUANG Gao, LIU Zhuang, VAN DER MAATEN L, et al. Densely connected convolutional networks[EB/OL]. https://arxiv.org/abs/1608.06993, 2018.
|
[37] |
MEHTA S and RASTEGARI M. MobileViT: Light-weight, general-purpose, and mobile-friendly vision transformer[C]. The 10th International Conference on Learning Representations, 2022.
|
[38] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 9992–10002. doi: 10.1109/ICCV48922.2021.00986.
|
[39] |
MOOSAVI-DEZFOOLI S M, FAWZI A, and FROSSARD P. DeepFool: A simple and accurate method to fool deep neural networks[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 2574–2582. doi: 10.1109/CVPR.2016.282.
|
[40] |
CROCE F and HEIN M. Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks[C]. The 37th International Conference on Machine Learning, 2020: 2206–2216.
|
[41] |
LI Haifeng, HUANG Haikuo, CHEN Li, et al. Adversarial examples for CNN-based SAR image classification: An experience study[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 1333–1347. doi: 10.1109/JSTARS.2020.3038683.
|