| Citation: | CHE Jiaheng, YAN Qiushuang, FAN Chenqing, et al. Machine learning-based modeling of wind and wave responses in sentinel-1 SAR doppler shifts for ocean current retrieval[J]. Journal of Radars, in press. doi: 10.12000/JR25099 |
| [1] |
MOISEEV A, JOHNSEN H, HANSEN W M, et al. Evaluation of radial ocean surface currents derived from Sentinel‐1 IW doppler shift using coastal radar and Lagrangian surface drifter observations[J]. Journal of Geophysical Research: Oceans, 2020, 125(4): e2019JC015743. doi: 10.1029/2019JC015743.
|
| [2] |
何宜军, 刘保昌, 张彪, 等. 海面流场卫星遥感方法综述[J]. 广西科学, 2015, 22(3): 294–300. doi: 10.13656/j.cnki.gxkx.2015.03.005.
HE Yijun, LIU Baochang, ZHANG Biao, et al. Overview on satellite remote-sensing methods for sea-surface-current measurement[J]. Guangxi Sciences, 2015, 22(3): 294–300. doi: 10.13656/j.cnki.gxkx.2015.03.005.
|
| [3] |
POTIN P, ROSICH B, MIRANDA N, et al. Sentinel-1 mission status[C]. 2017 IEEE International Geoscience and Remote Sensing Symposium, Fort Worth, USA, 2017: 5525–5528. doi: 10.1109/IGARSS.2017.8128255.
|
| [4] |
ROMEISER R, UFERMANN S, and ALPERS W. Remote sensing of oceanic current features by synthetic aperture radar—achievements and perspectives[J]. Annales Des Télécommunications, 2001, 56(11): 661–671. doi: 10.1007/BF02995560.
|
| [5] |
CHAPRON B, COLLARD F, and ARDHUIN F. Direct measurements of ocean surface velocity from space: Interpretation and validation[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07008. doi: 10.1029/2004JC002809.
|
| [6] |
JOHANNESSEN J A, CHAPRON B, COLLARD F, et al. Direct ocean surface velocity measurements from space: Improved quantitative interpretation of Envisat ASAR observations[J]. Geophysical Research Letters, 2008, 35(22): L22608. doi: 10.1029/2008GL035709.
|
| [7] |
MOUCHE A A, COLLARD F, CHAPRON B, et al. On the use of Doppler shift for sea surface wind retrieval from SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(7): 2901–2909. doi: 10.1109/TGRS.2011.2174998.
|
| [8] |
HANSEN M, COLLARD F, DAGESTAD K, et al. Retrieval of sea surface range velocities from Envisat ASAR Doppler centroid measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3582–3592. doi: 10.1109/TGRS.2011.2153864.
|
| [9] |
ELYOUNCHA A, ERIKSSON L E B, JOHNSEN H, et al. Using Sentinel-1 ocean data for mapping sea surface currents along the southern Norwegian Coast[C]. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 8058–8061. doi: 10.1109/IGARSS.2019.8898468.
|
| [10] |
MOISEEV A, JOHANNESSEN J A, and JOHNSEN H. Towards retrieving reliable ocean surface currents in the coastal zone from the Sentinel-1 Doppler shift observations[J]. Journal of Geophysical Research: Oceans, 2022, 127(5): e2021JC018201. doi: 10.1029/2021JC018201.
|
| [11] |
YANG Zhonghao, LIU Lei, WANG Jing, et al. Extrapolation of electromagnetic pointing error corrections for Sentinel-1 Doppler currents from land areas to the open ocean[J]. Remote Sensing of Environment, 2023, 297: 113788. doi: 10.1016/j.rse.2023.113788.
|
| [12] |
JOHNSEN H, NILSEN V, ENGEN G, et al. Ocean doppler anomaly and ocean surface current from Sentinel 1 tops mode[C]. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 2016: 3993–3996. doi: 10.1109/IGARSS.2016.7730038.
|
| [13] |
MOISEEV A, JOHNSEN H, JOHANNESSEN J A, et al. On removal of sea state contribution to Sentinel-1 Doppler shift for retrieving reliable ocean surface current[J]. Journal of Geophysical Research: Oceans, 2020, 125(9): e2020JC016288. doi: 10.1029/2020JC016288.
|
| [14] |
YANG Zhonghao, WANG Jing, LIU Lei, et al. Estimating effects of wind and waves on the Doppler centroid frequency shift for the SAR retrieval of ocean currents[J]. Remote Sensing of Environment, 2024, 311: 114312. doi: 10.1016/j.rse.2024.114312.
|
| [15] |
SHAO Weizeng, ZHOU Yuhang, HU Yuyi, et al. Range current retrieval fromsentinel-1 SAR ocean product based on deep learning[J]. Remote Sensing Letters, 2024, 15(2): 145–156. doi: 10.1080/2150704X.2024.2305176.
|
| [16] |
FAN Shengren, KUDRYAVTSEV V, YUROVSKY Y, et al. Reconstructing ocean surface current vector field from SAR doppler shift measurements[J]. Remote Sensing of Environment, 2025, 328: 114855. doi: 10.1016/j.rse.2025.114855.
|
| [17] |
CHEN Tianqi and GUESTRIN C. XGBoost: A scalable tree boosting system[C]. The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 2016: 785–794. doi: 10.1145/2939672.2939785.
|
| [18] |
BORISOV V, LEEMANN T, SEßLER K, et al. Deep neural networks and tabular data: A survey[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(6): 7499–7519. doi: 10.1109/TNNLS.2022.3229161.
|
| [19] |
GRINSZTAJN L, OYALLON E, and VAROQUAUX G. Why do tree-based models still outperform deep learning on typical tabular data?[C]. The 36th International Conference on Neural Information Processing Systems, New Orleans, USA, 2022: 37. doi: 10.5555/3600270.3600307.
|
| [20] |
MURPHY D and JANZEN C. Advances in in-situ ocean measurements[M]. VENKATESAN R, TANDON A, D'ASARO E, et al. Observing the Oceans in Real Time. Cham: Springer, 2018: 141–162. doi: 10.1007/978-3-319-66493-4_8.
|
| [21] |
Copernicus. Sentiwiki:S-1mission[EB/OL].2023. https://sentiwiki.copernicus.eu/web/s1-mission.
|
| [22] |
DE ZAN F and MONTI GUARNIERI A. TOPSAR: Terrain observation by progressive scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2352–2360. doi: 10.1109/TGRS.2006.873853.
|
| [23] |
Copernicus Marine Service. Product User Manual For Global Ocean Waves Analysis and Forecast [EB/OL]. CMEMS-GLO-PUM-001-032,2023. https://documentation.marine.copernicus.eu/PUM/CMEMS-GLO-PUM-001-032.pdf.
|
| [24] |
LAW-CHUNE S, AOUF L, DALPHINET A, et al. WAVERYS: A CMEMS global wave reanalysis during the altimetry period[J]. Ocean Dynamics, 2021, 71(3): 357–378. doi: 10.1007/s10236-020-01433-w.
|
| [25] |
ZHANG Yixuan, YUE Songshan, XU Kai, et al. Performance analysis of global HYCOM flow field using Argo profiles[J]. International Journal of Digital Earth, 2023, 16(1): 3536–3559. doi: 10.1080/17538947.2023.2252407.
|
| [26] |
CHASSIGNET E P, HURLBURT H E, SMEDSTAD O M, et al. The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system[J]. Journal of Marine Systems, 2007, 65(1/4): 60–83. doi: 10.1016/j.jmarsys.2005.09.016.
|
| [27] |
SAVAGE J A, TOKMAKIAN R T, and BATTEEN M L. Assessment of the HYCOM velocity fields during Agulhas Return Current Cruise 2012[J]. Journal of Operational Oceanography, 2015, 8(1): 11–24. doi: 10.1080/1755876X.2015.1014637.
|
| [28] |
KABIR A, LEMONGO-TCHAMBA I, and FERNANDEZ A. An assessment of available ocean current hydrokinetic energy near the North Carolina shore[J]. Renewable Energy, 2015, 80: 301–307. doi: 10.1016/j.renene.2015.02.011.
|
| [29] |
LUECKE C A, ARBIC B K, RICHMAN J G, et al. Statistical comparisons of temperature variance and kinetic energy in global ocean models and observations: Results from mesoscale to internal wave frequencies[J]. Journal of Geophysical Research: Oceans, 2020, 125(5): e2019JC015306. doi: 10.1029/2019JC015306.
|
| [30] |
WANG Haodi, CHEN Shiyao, WANG Ning, et al. Evaluation of multi-model current data in the East/Japan Sea[C]. 2020 IEEE 3rd International Conference on Information Communication and Signal Processing (ICICSP), Shanghai, China, 2020: 486–491. doi: 10.1109/ICICSP50920.2020.9232090.
|
| [31] |
HARLAN J, TERRILL E, HAZARD L, et al. The integrated ocean observing system HF radar network[C]. OCEANS 2015-MTS/IEEE Washington, Washington, USA, 2015: 1–4. doi: 10.23919/OCEANS.2015.7404587.
|
| [32] |
LORENTE P, SOTO-NAVARRO J, ALVAREZ FANJUL E, et al. Accuracy assessment of high frequency radar current measurements in the Strait of Gibraltar[J]. Journal of Operational Oceanography, 2014, 7(2): 59–73. doi: 10.1080/1755876X.2014.11020300.
|
| [33] |
KENNEDY J and EBERHART R. Particle swarm optimization[C]. ICNN'95 - International Conference on Neural Networks, Perth, Australia, 1995: 1942–1948. doi: 10.1109/ICNN.1995.488968.
|
| [34] |
MARCILIO W E and ELER D M. From explanations to feature selection: Assessing SHAP values as feature selection mechanism[C]. 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), Porto de Galinhas, Brazil, 2020: 340–347. doi: 10.1109/SIBGRAPI51738.2020.00053.
|
| [35] |
ANDRES M. Spatial and temporal variability of the gulf stream near cape Hatteras[J]. Journal of Geophysical Research: Oceans, 2021, 126(9): e2021JC017579. doi: 10.1029/2021JC017579.
|