Citation: | ZHAO Yingjian, JIANG Libing, ZHENG Shuyu, et al. Adaptive phd-bof: a slow-moving targets tracking method with air surveillance radar[J]. Journal of Radars, in press. doi: 10.12000/JR25081 |
[1] |
陈小龙, 袁旺, 杜晓林, 等. 多波段FMCW雷达低慢小探测数据集(LSS-FMCWR-1. 0)及高分辨微动特征提取方法[J]. 雷达学报(中英文), 2024, 13(3): 439–553. doi: 10.12000/JR23142.
CHEN Xiaolong, YUAN Wang, DU Xiaolin, et al. Multiband FMCW radar LSS-target detection dataset (LSS-FMCWR-1.0) and high-resolution micromotion feature extraction method[J]. Journal of Radars, 2024, 13(3): 439–553. doi: 10.12000/JR23142.
|
[2] |
陈小龙, 袁旺, 杜晓林, 等. 多波段多角度FMCW雷达低慢小探测数据集(LSS-FMCWR-2.0)及特征融合分类方法[J/OL]. 雷达学报, 1–18. https://link.cnki.net/urlid/10.1030.tn.20250514.0954.002, 2025.
CHEN Xiaolong, YUAN Wang, DU Xiaolin, et al. Multi-band multi-angle FMCW radar low-slow-small target detection dataset (LSS-FMCWR-2.0) and feature fusion classification methods[J/OL]. Journal of Radar, 1–18. https://link.cnki.net/urlid/10.1030.tn.20250514.0954.002, 2025.
|
[3] |
LUO Jiawei, HUANG Yulin, ZHANG Yongchao, et al. Optimal search strategy of low-altitude target for airborne phased array radar using digital elevation model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 8025–8037. doi: 10.1109/JSTARS.2022.3206793.
|
[4] |
鲁其兴, 汤新民, 齐鸣, 等. 一种改进的交互多模型算法在机场运动目标跟踪中的应用[J]. 电子与信息学报, 2025, 47(7): 2225–2236. doi: 10.11999/JEIT241150.
LU Qixing, TANG Xinmin, QI Ming, et al. An improved interacting multiple model algorithm and its application in airport moving target tracking[J]. Journal of Electronics & Information Technology, 2025, 47(7): 2225–2236. doi: 10.11999/JEIT241150.
|
[5] |
YANG Yong and YANG Boyu. Overview of radar detection methods for low altitude targets in marine environments[J]. Journal of Systems Engineering and Electronics, 2024, 35(1): 1–13. doi: 10.23919/JSEE.2024.000026.
|
[6] |
SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York: McGraw-Hill, 2008: 1-1328.
|
[7] |
WU Weihua, SUN Hemin, CAI Yichao, et al. MM-GLMB filter-based sensor control for tracking multiple maneuvering targets hidden in the Doppler blind zone[J]. IEEE Transactions on Signal Processing, 2020, 68: 4555–4567. doi: 10.1109/TSP.2020.3009497.
|
[8] |
HAN Wei, TANG Ziyue, and ZHU Zhenbo. Method of target tracking with Doppler blind zone constraint[J]. Journal of Systems Engineering and Electronics, 2013, 24(6): 889–898. doi: 10.1109/JSEE.2013.00103.
|
[9] |
SONG T L, MUSICKI D, and KIM Y. Tracking through occlusions and track segmentation reduction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 623–631. doi: 10.1109/TAES.2013.6404126.
|
[10] |
YEOM S W, KIRUBARAJAN T, and BAR-SHALOM Y. Track segment association, fine-step IMM and initialization with Doppler for improved track performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 293–309. doi: 10.1109/TAES.2004.1292161.
|
[11] |
徐开明, 王佰录, 李溯琪, 等. 低空监视雷达“走-停-走”目标跟踪技术[J]. 雷达学报, 2022, 11(3): 443–458. doi: 10.12000/JR21211.
XU Kaiming, WANG Bailu, LI Suqi, et al. Move-stop-move target tracking with low-altitude surveillance radars[J]. Journal of Radars, 2022, 11(3): 443–458. doi: 10.12000/JR21211.
|
[12] |
MBOUOMBOUO MBOUNGAM A H, ZHI Yongfeng, and FONZEU MONGUEN C K. Clutter map constant false alarm rate mixed with the Gabor transform for target detection via Monte Carlo simulation[J]. Applied Sciences, 2024, 14(7): 2967. doi: 10.3390/app14072967.
|
[13] |
PETROVSKAYA A, PERROLLAZ M, OLIVEIRA L, et al. Awareness of road scene participants for autonomous driving[M]. ESKANDARIAN A. Handbook of Intelligent Vehicles. London, U.K.: Springer, 2012: 1383–1432. doi: 10.1007/978-0-85729-085-4_54.
|
[14] |
BAIG Q, PERROLLAZ M, and LAUGIER C. A robust motion detection technique for dynamic environment monitoring: A framework for grid-based monitoring of the dynamic environment[J]. IEEE Robotics & Automation Magazine, 2014, 21(1): 40–48. doi: 10.1109/MRA.2013.2297812.
|
[15] |
DANESCU R, ONIGA F, and NEDEVSCHI S. Modeling and tracking the driving environment with a particle-based occupancy grid[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(4): 1331–1342. doi: 10.1109/TITS.2011.2158097.
|
[16] |
NÈGRE A, RUMMELHARD L, and LAUGIER C. Hybrid sampling Bayesian occupancy filter[C]. 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 2014: 1307–1312. doi: 10.1109/IVS.2014.6856554.
|
[17] |
MAHLER R. Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech House, 2007.
|
[18] |
MAHLER R P S. Multitarget Bayes filtering via first-order multitarget moments[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178. doi: 10.1109/TAES.2003.1261119.
|
[19] |
VO B N and MA W K. The Gaussian mixture probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4091–4104. doi: 10.1109/TSP.2006.881190.
|
[20] |
VO B T, VO B N, and CANTONI A. Analytic implementations of the cardinalized probability hypothesis density filter[J]. IEEE Transactions on Signal Processing, 2007, 55(7): 3553–3567. doi: 10.1109/TSP.2007.894241.
|
[21] |
VO B T, VO B N, and CANTONI A. The cardinality balanced multi-target multi-Bernoulli filter and its implementations[J]. IEEE Transactions on Signal Processing, 2009, 57(2): 409–423. doi: 10.1109/TSP.2008.2007924.
|
[22] |
VO B T and VO B N. Labeled random finite sets and multi-object conjugate priors[J]. IEEE Transactions on Signal Processing, 2013, 61(13): 3460–3475. doi: 10.1109/TSP.2013.2259822.
|
[23] |
VO B N, VO B T, and PHUNG D. Labeled random finite sets and the Bayes multi-target tracking filter[J]. IEEE Transactions on Signal Processing, 2014, 62(24): 6554–6567. doi: 10.1109/TSP.2014.2364014.
|
[24] |
NUSS D, REUTER S, THOM M, et al. A random finite set approach for dynamic occupancy grid maps with real-time application[J]. International Journal of Robotics Research, 2018, 37(8): 841–866. doi: 10.1177/0278364918775523.
|
[25] |
FAN H Q, KUCNER T P, MAGNUSSON M, et al. A dual PHD filter for effective occupancy filtering in a highly dynamic environment[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(9): 2977–2993. doi: 10.1109/TITS.2017.2770152.
|
[26] |
COUÉ C, PRADALIER C, LAUGIER C, et al. Bayesian occupancy filtering for multitarget tracking: An automotive application[J]. The International Journal of Robotics Research, 2006, 25(1): 19–30. doi: 10.1177/0278364906061158.
|
[27] |
CHEN C, TAY C, LAUGIER C, et al. Dynamic environment modeling with gridmap: A multiple-object tracking application[C]. 2006 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 2006: 1–6. doi: 10.1109/ICARCV.2006.345399.
|
[28] |
SAVAL-CALVO M, MEDINA-VALDÉS L, CASTILLO-SECILLA J M, et al. A review of the Bayesian occupancy filter[J]. Sensors, 2017, 17(2): 344. doi: 10.3390/s17020344.
|
[29] |
MAHAFZA B R and ELSHERBENI A Z. Matlab Simulations for Radar Systems Design[M]. New York: Chapman and Hall/CRC, 2004.
|
[30] |
MAHLER R. Advances in Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech House, 2014.
|
[31] |
HUANG Zicheng, LIANG Zuoping, ZHOU Shibo, et al. An improved density-based spatial clustering of applications with noise algorithm with an adaptive parameter based on the sparrow search algorithm[J]. Algorithms, 2025, 18(5): 273. doi: 10.3390/a18050273.
|
[32] |
SCHUHMACHER D, VO B T, and VO B N. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457. doi: 10.1109/TSP.2008.920469.
|