Citation: | GE Jianjun, TANG Siqi, LI Mingqiang, et al. Information theory and construction methods of complex perception systems[J]. Journal of Radars, 2025, 14(3): 651–663. doi: 10.12000/JR25078 |
[1] |
郭雷. 系统学是什么[J]. 系统科学与数学, 2016, 36(3): 291–301. doi: 10.12341/jssms12734.
GUO Lei. What is systematology[J]. Journal of Systems Science and Mathematical Sciences, 2016, 36(3): 291–301. doi: 10.12341/jssms12734.
|
[2] |
SHANNON C E. Communication in the presence of noise[J]. Proceedings of the IRE, 1949, 37(1): 10–21. doi: 10.1109/JRPROC.1949.232969.
|
[3] |
CARNAP R and BAR-HILLEL Y. An outline of a theory of semantic information[R]. RLE Technical Reports NO.247, 1952.
|
[4] |
WEAVER W. Recent contributions to the mathematical theory of communication[J]. ETC: A Review of General Semantics, 1953, 10(4): 261–281.
|
[5] |
DE LUCA A and TERMINI S. A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory[J]. Information and Control, 1972, 20(4): 301–312. doi: 10.1016/S0019-9958(72)90199-4.
|
[6] |
LONGO G. Information Theory New Trends and Open Problems[M]. Vienna: Springer, 1975: 219. doi: 10.1007/978-3-7091-2730-8.
|
[7] |
FLORIDI L. Outline of a theory of strongly semantic information[J]. Minds and Machines, 2004, 14(2): 197–221. doi: 10.1023/B:MIND.0000021684.50925.c9.
|
[8] |
钟义信. 信息科学原理[M]. 3版. 北京: 北京邮电大学出版社, 2002.
ZHONG Yixin. Principles of Information Science[M]. 3rd ed. Beijing: Beijing University of Posts and Telecommunications Press, 2002.
|
[9] |
ZHONG Yixin. A theory of semantic information[J]. China Communications, 2017, 14(1): 1–17. doi: 10.1109/CC.2017.7839754.
|
[10] |
QIN Zhijin, TAO Xiaoming, LU Jianhua, et al. Semantic communications: Principles and challenges[EB/OL]. https://arxiv.org/abs/2201.01389, 2021.
|
[11] |
SHI Yuanming, ZHOU Yong, WEN Dingzhu, et al. Task-oriented communications for 6G: Vision, principles, and technologies[J]. IEEE Wireless Communications, 2023, 30(3): 78–85. doi: 10.1109/MWC.002.2200468.
|
[12] |
GETU T M, KADDOUM G, and BENNIS M. A survey on goal-oriented semantic communication: Techniques, challenges, and future directions[J]. IEEE Access, 2024, 12: 51223–51274. doi: 10.1109/ACCESS.2024.3381967.
|
[13] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, USA, 2017: 6000–6010. doi: 10.5555/3295222.3295349.
|
[14] |
BROWN T B, MANN B, RYDER N, et al. Language models are few-shot learners[C]. The 34th International Conference on Neural Information Processing System, Vancouver, Canada, 2020: 159. doi: 10.5555/3495724.3495883.
|
[15] |
LIU Aixin, FENG Bei, XUE Bing, et al. DeepSeek-V3 technical report[EB/OL]. https://arxiv.org/abs/2412.19437, 2024.
|
[16] |
NIU Kai and ZHANG Ping. A mathematical theory of semantic communication[EB/OL]. https://arxiv.org/abs/2401.13387, 2024.
|
[17] |
HARTE J, UMEMURA K, and BRUSH M. DynaMETE: A hybrid MaxEnt-plus-mechanism theory of dynamic macroecology[J]. Ecology Letters, 2021, 24(5): 935–949. doi: 10.1111/ele.13714.
|
[18] |
LINDGREN K. Information Theory for Complex Systems: An Information Perspective on Complexity in Dynamical Systems and Statistical Mechanics[M]. Berlin: Springer Berlin, Heidelberg, 2024: 5–20.
|
[19] |
SCHREIBER T. Measuring information transfer[J]. Physical Review Letters, 2000, 85(2): 461–464. doi: 10.1103/PhysRevLett.85.461.
|
[20] |
ROSAS F E, MEDIANO P A M, GASTPAR M, et al. Quantifying high-order interdependencies via multivariate extensions of the mutual information[J]. Physical Review E, 2019, 100: 032305. doi: 10.1103/PhysRevE.100.032305.
|
[21] |
LIANG X S and KLEEMAN R. Information transfer between dynamical system components[J]. Physical Review Letters, 2005, 95: 244101. doi: 10.1103/PhysRevLett.95.244101.
|
[22] |
JAMES R G, BARNETT N, and CRUTCHFIELD J P. Information flows? A critique of transfer entropies[J]. Physical Review Letters, 2016, 116(23): 238701. doi: 10.1103/PhysRevLett.116.238701.
|
[23] |
JAMES R G, AYALA B D M, ZAKIROV B, et al. Modes of information flow[EB/OL]. https://arxiv.org/abs/1808.06723, 2018.
|
[24] |
VARLEY T F, POPE M, FASKOWITZ J, et al. Multivariate information theory uncovers synergistic subsystems of the human cerebral cortex[J]. Communications Biology, 2023, 6(1): 451. doi: 10.1038/s42003-023-04843-w.
|
[25] |
GIULIO T. An information integration theory of consciousness[J]. BMC Neuroscience, 2004, 5(1): 42. doi: 10.1186/1471-2202-5-42.
|
[26] |
陈保亚, 杜兆金. 语言学概论[M]. 北京: 北京大学出版社, 2023: 107–208.
CHEN Baoya and DU Zhaojin. Introduction to Linguistics[M]. Beijing: Peking University Press, 2023: 107–208.
|
[27] |
DERHAM T, WOODBRIDGE K, GRIFFITHS H, et al. The design and development of an experimental netted radar system[C]. 2003 International Conference on Radar, Adelaide, Australia, 2003: 293–298. doi: 10.1109/RADAR.2003.1278755.
|
[28] |
BAKER C J and HUME A L. Netted radar sensing[J]. IEEE Aerospace and Electronic Systems Magazine, 2003, 18(2): 3–6. doi: 10.1109/MAES.2003.1183861.
|
[29] |
刘宏伟, 严峻坤, 周生华. 网络化雷达协同探测技术[J]. 现代雷达, 2020, 42(12): 7–12. doi: 10.16592/j.cnki.1004-7859.2020.12.002.
LIU Hongwei, YAN Junkun, and ZHOU Shenghua. Collaborative detection technology of netted radar[J]. Modern Radar, 2020, 42(12): 7–12. doi: 10.16592/j.cnki.1004-7859.2020.12.002.
|
[30] |
葛建军, 李春霞. 探测体系能力生成理论及方法[J]. 雷达科学与技术, 2018, 16(3): 237–241, 248. doi: 10.3969/j.issn.1672-2337.2018.03.001.
GE Jianjun and LI Chunxia. Theory and method for capability generation of detection system[J]. Radar Science and Technology, 2018, 16(3): 237–241, 248. doi: 10.3969/j.issn.1672-2337.2018.03.001.
|
[31] |
袁野, 杨剑, 刘辛雨, 等. 基于任务效用最大化的多雷达协同任务规划算法[J]. 雷达学报, 2023, 12(3): 550–562. doi: 10.12000/JR23013.
YUAN Ye, YANG Jian, LIU Xinyu, et al. Multiradar collaborative task planning based on task utility maximization[J]. Journal of Radars, 2023, 12(3): 550–562. doi: 10.12000/JR23013.
|
[32] |
易伟, 袁野, 刘光宏, 等. 多雷达协同探测技术研究进展: 认知跟踪与资源调度算法[J]. 雷达学报, 2023, 12(3): 471–499. doi: 10.12000/JR23036.
YI Wei, YUAN Ye, LIU Guanghong, et al. Recent advances in multi-radar collaborative surveillance: Cognitive tracking and resource scheduling algorithms[J]. Journal of Radars, 2023, 12(3): 471–499. doi: 10.12000/JR23036.
|
[33] |
曾雅俊, 王俊, 魏少明, 等. 分布式多传感器多目标跟踪方法综述[J]. 雷达学报, 2023, 12(1): 197–213. doi: 10.12000/JR22111.
ZENG Yajun, WANG Jun, WEI Shaoming, et al. Review of the method for distributed multi-sensor multi-target tracking[J]. Journal of Radars, 2023, 12(1): 197–213. doi: 10.12000/JR22111.
|
[34] |
YAN Junkun, JIAO Hao, PU Wenqiang, et al. Radar sensor network resource allocation for fused target tracking: A brief review[J]. Information Fusion, 2022, 86/87: 104–115. doi: 10.1016/j.inffus.2022.06.009.
|
[35] |
LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278–2324. doi: 10.1109/5.726791.
|
[36] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[37] |
WILLIAMS R J and ZIPSER D. A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1989, 1(2): 270–280. doi: 10.1162/neco.1989.1.2.270.
|
[38] |
HOCHREITER S and SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735–1780. doi: 10.1162/neco.1997.9.8.1735.
|
[39] |
CHO K, VAN MERRIËNBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]. The 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014: 1724–1734. doi: 10.3115/v1/D14-1179.
|
[40] |
KINGMA D P and WELLING M. Auto-encoding variational Bayes[C]. 2nd International Conference on Learning Representations, Banff, Canada, 2014.
|
[41] |
ZHANG Ziwei, CUI Peng, and ZHU Wenwu. Deep learning on graphs: A survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 249–270. doi: 10.1109/TKDE.2020.2981333.
|
[42] |
BATTAGLIA P W, HAMRICK J B, BAPST V, et al. Relational inductive biases, deep learning, and graph networks[EB/OL]. https://arxiv.org/abs/1806.01261, 2018.
|
[43] |
ZHOU Jie, CUI Ganqu, HU Shengding, et al. Graph neural networks: A review of methods and applications[J]. AI Open, 2020, 1: 57–81. doi: 10.1016/j.aiopen.2021.01.001.
|
[44] |
JAIN A, ZAMIR A R, SAVARESE S, et al. Structural-RNN: Deep learning on spatio-temporal graphs[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 5308–5317. doi: 10.1109/CVPR.2016.573.
|
[45] |
LI Yaguang, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: Data-driven traffic forecasting[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[46] |
YAN Sijie, XIONG Yuanjun, and LIN Dahua. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. The Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, USA, 2018. doi: 10.1609/aaai.v32i1.12328.
|
[47] |
SONG Chao, LIN Youfang, GUO Shengnan, et al. Spatial-temporal synchronous graph convolutional networks: A new framework for spatial-temporal network data forecasting[C]. The Thirty-Fourth AAAI Conference on Artificial Intelligence, New York, USA, 2020: 914–921. doi: 10.1609/aaai.v34i01.5438.
|
[48] |
HJELM R D, FEDOROV A, LAVOIE-MARCHILDON S, et al. Learning deep representations by mutual information estimation and maximization[C]. 7th International Conference on Learning Representations, New Orleans, USA, 2019.
|
[49] |
SANCHEZ E H, SERRURIER M, and ORTNER M. Learning disentangled representations via mutual information estimation[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 205–221. doi: 10.1007/978-3-030-58542-6_13.
|
[50] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 779–788. doi: 10.1109/CVPR.2016.91.
|
[51] |
WANG C Y, BOCHKOVSKIY A, and LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, Canada, 2023: 7464–7475. doi: 10.1109/CVPR52729.2023.00721.
|
[52] |
VELIČKOVIĆ P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]. 6th International Conference on Learning Representations, Vancouver, Canada, 2018.
|
[53] |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data[C]. 20th International Conference on Artificial Intelligence and Statistics, Fort Lauderdale, USA, 2017: 1273–1282.
|
[54] |
HOSPEDALES T, ANTONIOU A, MICAELLI P, et al. Meta-learning in neural networks: A survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 5149–5169. doi: 10.1109/TPAMI.2021.3079209.
|
[55] |
ZHANG Jiaxiang, LIANG Zhennan, ZHOU Chao, et al. Radar compound jamming cognition based on a deep object detection network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3251–3263. doi: 10.1109/TAES.2022.3224695.
|
[56] |
ZHOU Xinquan and LENG Yanhong. Residual acoustic echo suppression based on efficient multi-task convolutional neural network[EB/OL]. https://arxiv.org/abs/2009.13931, 2020.
|