Citation: | TANG Aimin, LIU Fan, YUAN Weijie, et al. Signal design for communication centric ISAC: state of art and future aspects[J]. Journal of Radars, 2025, 14(4): 1019–1045. doi: 10.12000/JR25073 |
[1] |
SAAD W, BENNIS M, and CHEN Mingzhe. A vision of 6G wireless systems: Applications, trends, technologies, and open research problems[J]. IEEE Network, 2020, 34(3): 134–142. doi: 10.1109/MNET.001.1900287.
|
[2] |
PAULRAJ A J and KAILATH T. Increasing capacity in wireless broadcast systems using distributed transmission/directional reception (DTDR)[P]. US, 5345599, 1994.
|
[3] |
FISHLER E, HAIMOVICH A, BLUM R, et al. MIMO radar: An idea whose time has come[C]. 2004 IEEE Radar Conference, Philadelphia, USA, 2004: 71–78. doi: 10.1109/NRC.2004.1316398.
|
[4] |
HUGHES P K and CHOE J Y. Overview of advanced multifunction RF system (AMRFS)[C]. 2000 IEEE International Conference on Phased Array Systems and Technology, Dana Point, USA, 2000: 21–24. doi: 10.1109/PAST.2000.858893.
|
[5] |
ROBERTON M and BROWN E R. Integrated radar and communications based on chirped spread-spectrum techniques[C]. IEEE MTT-S International Microwave Symposium Digest, Philadelphia, USA, 2003: 611–614. doi: 10.1109/MWSYM.2003.1211013.
|
[6] |
STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
|
[7] |
LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
|
[8] |
刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
|
[9] |
ITU. Framework and overall objectives of the future development of IMT for 2030 and beyond[R]. ITU-R M.2160-0, 2023.
|
[10] |
3GPP. Study on integrated sensing and communication[R]. TR 22.837, 2024.
|
[11] |
XIONG Yifeng, LIU Fan, CUI Yuanhao, et al. On the fundamental tradeoff of integrated sensing and communications under Gaussian channels[J]. IEEE Transactions on Information Theory, 2023, 69(9): 5723–5751. doi: 10.1109/TIT.2023.3284449.
|
[12] |
XIONG Yifeng, LIU Fan, WAN Kai, et al. From torch to projector: Fundamental tradeoff of integrated sensing and communications[J]. IEEE BITS the Information Theory Magazine, 2024, 4(1): 73–90. doi: 10.1109/MBITS.2024.3376638.
|
[13] |
ZHANG Zhengyu, HE Ruisi, AI Bo, et al. A general channel model for integrated sensing and communication scenarios[J]. IEEE Communications Magazine, 2023, 61(5): 68–74. doi: 10.1109/MCOM.001.2200420.
|
[14] |
LUO Chenhao, TANG Aimin, GAO Fei, et al. Channel modeling framework for both communications and bistatic sensing under 3GPP standard[J]. IEEE Journal of Selected Areas in Sensors, 2024, 1: 166–176. doi: 10.1109/JSAS.2024.3451411.
|
[15] |
QI Chenhao, CI Wei, ZHANG Jinming, et al. Hybrid beamforming for millimeter wave MIMO integrated sensing and communications[J]. IEEE Communications Letters, 2022, 26(5): 1136–1140. doi: 10.1109/LCOMM.2022.3157751.
|
[16] |
WANG Xinyi, FEI Zesong, ZHANG J A, et al. Partially-connected hybrid beamforming design for integrated sensing and communication systems[J]. IEEE Transactions on Communications, 2022, 70(10): 6648–6660. doi: 10.1109/TCOMM.2022.3202215.
|
[17] |
ZHAO Qimin, TANG Aimin, WANG Xudong, et al. Joint transmit and receive beamforming for integrated bistatic radar sensing and MU-MIMO communications[C]. The 98th Vehicular Technology Conference, Hong Kong, China, 2023: 1–6. doi: 10.1109/VTC2023-Fall60731.2023.10333698.
|
[18] |
TANG Aimin, WANG Xudong, and ZHANG J A. Interference management for full-duplex ISAC in B5G/6G networks: Architectures, challenges, and solutions[J]. IEEE Communications Magazine, 2024, 62(9): 20–26. doi: 10.1109/MCOM.001.2300654.
|
[19] |
LI Songqian, LUO Chenhao, TANG Aimin, et al. Integrating passive bistatic sensing into mmWave B5G/6G networks: Design and experiment measurement[C]. IEEE International Conference on Communications, Rome, Italy, 2023: 2952–2957. doi: 10.1109/ICC45041.2023.10279065.
|
[20] |
HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667.
|
[21] |
TEMIZ M, HORNE C, PETERS N J, et al. An experimental study of radar-centric transmission for integrated sensing and communications[J]. IEEE Transactions on Microwave Theory and Techniques, 2023, 71(7): 3203–3216. doi: 10.1109/TMTT.2023.3234309.
|
[22] |
MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. FRaC: FMCW-based joint radar-communications system via index modulation[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1348–1364. doi: 10.1109/JSTSP.2021.3118219.
|
[23] |
HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394.
|
[24] |
ZHENG Le, LOPS M, ELDAR Y C, et al. Radar and communication coexistence: An overview: A review of recent methods[J]. IEEE Signal Processing Magazine, 2019, 36(5): 85–99. doi: 10.1109/MSP.2019.2907329.
|
[25] |
余显祥, 姚雪, 杨婧, 等. 面向感知应用的通感一体化信号设计技术与综述[J]. 雷达学报, 2023, 12(2): 247–261. doi: 10.12000/JR23015.
YU Xianxiang, YAO Xue, YANG Jing, et al. Radar-centric DFRC signal design: Overview and future research avenues[J]. Journal of Radars, 2023, 12(2): 247–261. doi: 10.12000/JR23015.
|
[26] |
JAMIL M, ZEPERNICK H J, and PETTERSSON M I. On integrated radar and communication systems using Oppermann sequences[C]. 2008 IEEE Military Communications Conference, San Diego, USA, 2008: 1–6. doi: 10.1109/MILCOM.2008.4753277.
|
[27] |
WU Kai, ZHANG J A, HUANG Xiaojing, et al. Integrating low-complexity and flexible sensing into communication systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1873–1889. doi: 10.1109/JSAC.2022.3156649.
|
[28] |
MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Joint radar-communication strategies for autonomous vehicles: Combining two key automotive technologies[J]. IEEE Signal Processing Magazine, 2020, 37(4): 85–97. doi: 10.1109/MSP.2020.2983832.
|
[29] |
MA Dingyou, SHLEZINGER N, HUANG Tianyao, et al. Spatial modulation for joint radar-communications systems: Design, analysis, and hardware prototype[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2283–2298. doi: 10.1109/TVT.2021.3056408.
|
[30] |
LIU Fan, ZHOU Longfei, MASOUROS C, et al. Toward dual-functional radar-communication systems: Optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66(16): 4264–4279. doi: 10.1109/TSP.2018.2847648.
|
[31] |
LIU Xiang, HUANG Tianyao, SHLEZINGER N, et al. Joint transmit beamforming for multiuser MIMO communications and MIMO radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 3929–3944. doi: 10.1109/TSP.2020.3004739.
|
[32] |
LIU Fan, LIU Yafeng, LI Ang, et al. Cramér-Rao bound optimization for joint radar-communication beamforming[J]. IEEE Transactions on Signal Processing, 2022, 70: 240–253. doi: 10.1109/TSP.2021.3135692.
|
[33] |
HUA Haocheng, HAN Tongxiao, and XU Jie. MIMO integrated sensing and communication: CRB-rate tradeoff[J]. IEEE Transactions on Wireless Communications, 2024, 23(4): 2839–2854. doi: 10.1109/TWC.2023.3303326.
|
[34] |
马丁友, 刘祥, 黄天耀, 等. 雷达通信一体化: 共用波形设计和性能边界[J]. 雷达学报, 2022, 11(2): 198–212. doi: 10.12000/JR21146.
MA Dingyou, LIU Xiang, HUANG Tianyao, et al. Joint radar and communications: Shared waveform designs and performance bounds[J]. Journal of Radars, 2022, 11(2): 198–212. doi: 10.12000/JR21146.
|
[35] |
BARNETO C B, LIYANAARACHCHI S D, HEINO M, et al. Full duplex radio/radar technology: The enabler for advanced joint communication and sensing[J]. IEEE Wireless Communications, 2021, 28(1): 82–88. doi: 10.1109/MWC.001.2000220.
|
[36] |
PROAKIS J G and SALEHI M. Digital Communications[M]. 5th ed. New York: McGraw-Hill, 2008.
|
[37] |
ZHANG Yumeng, ADITYA S, and CLERCKX B. Input distribution optimization in OFDM dual-function radar-communication systems[J]. IEEE Transactions on Signal Processing, 2024, 72: 5258–5273. doi: 10.1109/TSP.2024.3491899.
|
[38] |
DERRYBERRY R T, GRAY S D, IONESCU D M, et al. Transmit diversity in 3G CDMA systems[J]. IEEE Communications Magazine, 2002, 40(4): 68–75. doi: 10.1109/35.995853.
|
[39] |
BEMANI Ali, KSAIRI N, and KOUNTOURIS M. Affine frequency division multiplexing for next generation wireless communications[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 8214–8229. doi: 10.1109/TWC.2023.3260906.
|
[40] |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation[C]. 2017 IEEE Wireless Communications and Networking Conference, San Francisco, USA, 2017: 1–6. doi: 10.1109/WCNC.2017.7925924.
|
[41] |
COHEN D and ELDAR Y C. Sub-nyquist radar systems: Temporal, spectral, and spatial compression[J]. IEEE Signal Processing Magazine, 2018, 35(6): 35–58. doi: 10.1109/MSP.2018.2868137.
|
[42] |
BRAUN M, STURM C, and JONDRAL F K. Maximum likelihood speed and distance estimation for OFDM radar[C]. 2010 IEEE Radar Conference, Arlington, USA, 2010: 256–261. doi: 10.1109/RADAR.2010.5494616.
|
[43] |
REICHARDT L, STURM C, GRÜNHAUPT F, et al. Demonstrating the use of the IEEE 802.11P Car-to-Car communication standard for automotive radar[C]. 2012 6th European Conference on Antennas and Propagation, Prague, Czech Republic, 2012: 1576–1580. doi: 10.1109/EuCAP.2012.6206084.
|
[44] |
USMAN MAZHER K, SHIMIZU T, HEATH R W, et al. Automotive radar using IEEE 802.11p signals[C]. 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6. doi: 10.1109/WCNC.2018.8377043.
|
[45] |
KIHEI B, COPELAND J A, and CHANG Yusun. Design considerations for vehicle-to-vehicle IEEE 802.11p radar in collision avoidance[C]. 2015 IEEE Global Communications Conference, San Diego, USA, 2015: 1–7. doi: 10.1109/GLOCOM.2015.7417441.
|
[46] |
KUMARI P, GONZALEZ-PRELCIC N, and HEATH R W. Investigating the IEEE 802.11ad standard for millimeter wave automotive radar[C]. 2015 IEEE 82nd Vehicular Technology Conference, Boston, USA, 2015: 1–5. doi: 10.1109/VTCFall.2015.7390996.
|
[47] |
KUMARI P, CHOI J, GONZÁLEZ-PRELCIC N, et al. IEEE 802.11ad-based radar: An approach to joint vehicular communication-radar system[J]. IEEE Transactions on Vehicular Technology, 2018, 67(4): 3012–3027. doi: 10.1109/TVT.2017.2774762.
|
[48] |
KUMARI P, ELTAYEB M E, and HEATH R W. Sparsity-aware adaptive beamforming design for IEEE 802.11ad-based joint communication-radar[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 923–928. doi: 10.1109/RADAR.2018.8378684.
|
[49] |
MUNS G R, MISHRA K V, GUERRA C B, et al. Beam alignment and tracking for autonomous vehicular communication using IEEE 802.11ad-based radar[C]. IEEE Conference on Computer Communications Workshops, Paris, France, 2019: 535–540. doi: 10.1109/INFCOMW.2019.8845121.
|
[50] |
LIU Linglin, JU Honghao, FANG Xuming, et al. Systematic design of radar detection under IEEE 802.11ad framework[C]. 2021 IEEE 94th Vehicular Technology Conference, Norman, USA, 2021: 1–5. doi: 10.1109/VTC2021-Fall52928.2021.9625293.
|
[51] |
GROSSI E, LOPS M, VENTURINO L, et al. Opportunistic automotive radar using the IEEE 802.11ad standard[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1196–1200. doi: 10.1109/RADAR.2017.7944386.
|
[52] |
GROSSI E, LOPS M, VENTURINO L, et al. Opportunistic radar in IEEE 802.11ad networks[J]. IEEE Transactions on Signal Processing, 2018, 66(9): 2441–2454. doi: 10.1109/TSP.2018.2813300.
|
[53] |
GROSSI E, LOPS M, and VENTURINO L. Adaptive detection and localization exploiting the IEEE 802.11ad standard[J]. IEEE Transactions on Wireless Communications, 2020, 19(7): 4394–4407. doi: 10.1109/TWC.2020.2983032.
|
[54] |
EVERS A and JACKSON J A. Analysis of an LTE waveform for radar applications[C]. 2014 IEEE Radar Conference, Cincinnati, USA, 2014: 0200–0205. doi: 10.1109/RADAR.2014.6875584.
|
[55] |
EVERS A and JACKSON J A. Cross-ambiguity characterization of communication waveform features for passive radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(4): 3440–3455. doi: 10.1109/TAES.2015.140622.
|
[56] |
DAN Yangpeng, WAN Xianrong, YI Jianxin, et al. Ambiguity function analysis of Long Term Evolution transmission for passive radar[C]. 2018 12th International Symposium on Antennas, Propagation and EM Theory, Hangzhou, China, 2018: 1–4. doi: 10.1109/ISAPE.2018.8634255.
|
[57] |
BLÁZQUEZ-GARCÍA R, CASAMAYÓN-ANTÓN J, and BURGOS-GARCÍA M. LTE-R based passive multistatic radar for high-speed railway network surveillance[C]. 2018 15th European Radar Conference, Madrid, Spain, 2018: 6–9. doi: 10.23919/EuRAD.2018.8546516.
|
[58] |
LIU Yan, DAN Yangpeng, WAN Xianrong, et al. Investigations on 5G-based passive sensing for IoT applications[C]. 2022 IEEE 8th International Conference on Computer and Communications, Chengdu, China, 2022: 823–828. doi: 10.1109/ICCC56324.2022.10065876.
|
[59] |
CUI Yuanhao, JING Xiaojun, and MU Junsheng. Integrated sensing and communications via 5G NR waveform: Performance analysis[C]. 2022 IEEE International Conference on Acoustics, Speech and Signal Processing, Singapore, Singapore, 2022: 8747–8751. doi: 10.1109/ICASSP43922.2022.9746355.
|
[60] |
SAMCZYŃSKI P, ABRATKIEWICZ K, PŁOTKA M, et al. 5G network-based passive radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5108209. doi: 10.1109/TGRS.2021.3137904.
|
[61] |
KSIĘŻYK A, PŁOTKA M, ABRATKIEWICZ K, et al. Opportunities and limitations in radar sensing based on 5G broadband cellular networks[J]. IEEE Aerospace and Electronic Systems Magazine, 2023, 38(9): 4–21. doi: 10.1109/MAES.2023.3267061.
|
[62] |
LI Hang, XIANG Yang, GUO Qinghua, et al. An efficient direct downlink sensing method using 5G NR SSB signals in perceptive mobile networks[J]. IEEE Internet of Things Journal, 2025, 12(11): 15360–15369. doi: 10.1109/JIOT.2025.3527234.
|
[63] |
ABRATKIEWICZ K, KSIĘŻYK A, PŁOTKA M, et al. SSB-based signal processing for passive radar using a 5G network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2023, 16: 3469–3484. doi: 10.1109/JSTARS.2023.3262291.
|
[64] |
GOLZADEH M, TIIROLA E, ANTTILA L, et al. Downlink sensing in 5G-advanced and 6G: SIB1-assisted SSB approach[C]. 2023 IEEE 97th Vehicular Technology Conference, Florence, Italy, 2023: 1–7. doi: 10.1109/VTC2023-Spring57618.2023.10200933.
|
[65] |
RAHMAN L, CUI Pengfei, ZHANG J A, et al. Joint communication and radar sensing in 5G mobile network by compressive sensing[C]. 2019 19th International Symposium on Communications and Information Technologies, Ho Chi Minh City, Vietnam, 2019: 599–604. doi: 10.1109/ISCIT.2019.8905229.
|
[66] |
KANHERE O, GOYAL S, BELURI M, et al. Target localization using bistatic and multistatic radar with 5G NR waveform[C]. 2021 IEEE 93rd Vehicular Technology Conference, Helsinki, Finland, 2021: 1–7. doi: 10.1109/VTC2021-Spring51267.2021.9449071.
|
[67] |
WEI Zhiqing, WANG Yuan, MA Liang, et al. 5G PRS-based sensing: A sensing reference signal approach for joint sensing and communication system[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3250–3263. doi: 10.1109/TVT.2022.3215159.
|
[68] |
ÖZBAY E, BISHOYI P K, and PETROVA M. Empowering 5G PRS-based ISAC with compressed sensing[C]. 2024 IEEE 25th International Workshop on Signal Processing Advances in Wireless Communications, Lucca, Italy, 2024: 341–345. doi: 10.1109/SPAWC60668.2024.10694602.
|
[69] |
GOLZADEH M, TIIROLA E, TALVITIE J, et al. Joint sensing and UE positioning in 5G-6G: PRS range estimation with suppressed ambiguity[C]. 2024 IEEE Radar Conference, Denver, USA, 2024: 1–6. doi: 10.1109/RadarConf2458775.2024.10548650.
|
[70] |
NATARAJA N K, SHARMA S, ALI K, et al. Bistatic vehicular radar with 5G-NR signals[C]. 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 5605–5610. doi: 10.1109/GLOBECOM54140.2023.10436863.
|
[71] |
MA Liang, PAN Chengkang, WANG Qixing, et al. A downlink pilot based signal processing method for integrated sensing and communication towards 6G[C]. 2022 IEEE 95th Vehicular Technology Conference, Helsinki, Finland, 2022: 1–5. doi: 10.1109/VTC2022-Spring54318.2022.9860693.
|
[72] |
WEI Zhiqing, LI Fengyun, LIU Haotian, et al. Multiple reference signals collaborative sensing for integrated sensing and communication system towards 5G-A and 6G[J]. IEEE Transactions on Vehicular Technology, 2024, 73(10): 15185–15199. doi: 10.1109/TVT.2024.3410352.
|
[73] |
KHOSROSHAHI K, SEHIER P, and MEKKI S. Leveraging PRS and PDSCH for integrated sensing and communication systems[C]. 2024 IEEE Global Communications Conference, Cape Town, South Africa, 2024: 4702–4707. doi: 10.1109/GLOBECOM52923.2024.10901798.
|
[74] |
KHOSROSHAHI K, SEHIER P, and MEKKI S. Doppler ambiguity elimination using 5G signals in integrated sensing and communication[C]. 2024 IEEE 100th Vehicular Technology Conference, Washington, USA, 2024: 1–6. doi: 10.1109/VTC2024-Fall63153.2024.10757748.
|
[75] |
DUGGAL G, VISHWAKARMA S, MISHRA K V, et al. Doppler-resilient 802.11ad-based ultrashort range automotive joint radar-communications system[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(5): 4035–4048. doi: 10.1109/TAES.2020.2990393.
|
[76] |
YE Zhifan, ZHOU Zhengchun, FAN Pingzhi, et al. Low ambiguity zone: Theoretical bounds and Doppler-resilient sequence design in integrated sensing and communication systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1809–1822. doi: 10.1109/JSAC.2022.3155510.
|
[77] |
WANG Diao, CHEN Weiwei, HE Yinghui, et al. Experimental study on ISAC performance with different sensing sequences[J]. IEEE Communications Letters, 2024, 28(11): 2538–2542. doi: 10.1109/LCOMM.2024.3455779.
|
[78] |
WEI Zhiqing, QU Hanyang, JIANG Wangjun, et al. Iterative signal processing for integrated sensing and communication systems[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 401–412. doi: 10.1109/TGCN.2023.3234825.
|
[79] |
KUMARI P, VOROBYOV S A, and HEATH R W. Adaptive virtual waveform design for millimeter-wave joint communication-radar[J]. IEEE Transactions on Signal Processing, 2020, 68: 715–730. doi: 10.1109/TSP.2019.2956689.
|
[80] |
TANG Aimin, LI Songqian, and WANG Xudong. Self-interference-resistant IEEE 802.11ad-based joint communication and automotive radar design[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1484–1499. doi: 10.1109/JSTSP.2021.3118888.
|
[81] |
ZHAO Qimin, TANG Aimin, and WANG Xudong. Reference signal design and power optimization for energy-efficient 5G V2X integrated sensing and communications[J]. IEEE Transactions on Green Communications and Networking, 2023, 7(1): 379–392. doi: 10.1109/TGCN.2023.3234392.
|
[82] |
ZHANG Rui, TSAI S, CHOU T H, et al. Staggered comb reference signal design for integrated communication and sensing[C]. 2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications, Valencia, Spain, 2024: 1–7. doi: 10.1109/PIMRC59610.2024.10817393.
|
[83] |
ZHANG Rui, TSAI S, CHOU T H, et al. OFDM reference signal pattern design criteria for integrated communication and sensing[J]. IEEE Internet of Things Journal, 2025, 12(6): 7389–7404. doi: 10.1109/JIOT.2024.3495562.
|
[84] |
MEI Dongyang, WEI Zhiqing, CHEN Xu, et al. A coprime and periodic pilot design for ISAC system[C]. 2024 IEEE Wireless Communications and Networking Conference, Dubai, United Arab Emirates, 2024: 1–6. doi: 10.1109/WCNC57260.2024.10571182.
|
[85] |
LIU Wenjia, HOU Xiaolin, LIU Juan, et al. Low-overhead sensing RS design for integrated sensing and communication (ISAC)[C]. 2025 IEEE Wireless Communications and Networking Conference, Milan, Italy, 2025: 1–6. doi: 10.1109/WCNC61545.2025.10978510.
|
[86] |
唐爱民, 王书涵, 曲文泽. 面向远距离高速无人机检测的OFDM通信感知一体化参考信号设计[J]. 雷达学报(中英文), 2025, 14(4): 842–853. doi: 10.12000/JR24240.
TANG Aimin, WANG Shuhan, and QU Wenze. Reference signal design in OFDM ISAC for long-range and high-speed UAV detection[J]. Journal of Radars, 2025, 14(4): 842–853. doi: 10.12000/JR24240.
|
[87] |
TANG Aimin and WANG Xudong. Self-interference-resistant IEEE 802.11ad-based joint communication and automotive long range radar[C]. 2020 IEEE Global Communications Conference, Taipei, China, 2020: 1–6. doi: 10.1109/GLOBECOM42002.2020.9348201.
|
[88] |
WANG Lin, WEI Zhiqing, SU Liyan, et al. Coherent compensation based ISAC signal processing for long-range sensing: (Invited Paper)[C]. The 21st International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, Singapore, Singapore, 2023: 689–695. doi: 10.23919/WiOpt58741.2023.10349853.
|
[89] |
TANG Aimin, ZHAO Qimin, WANG Xudong, et al. ISI-resistant reference signal design and processing for OFDM integrated communications and long-range radar sensing[J]. IEEE Communications Letters, 2024, 28(6): 1322–1326. doi: 10.1109/LCOMM.2024.3394545.
|
[90] |
ZHOU Yanni, XU Chaojun, LIU Jianguo, et al. Improving ISAC system long-range sensing with alternating cyclic prefix and postfix signals[C]. 2024 IEEE 35th International Symposium on Personal, Indoor and Mobile Radio Communications, Valencia, Spain, 2024: 1–6. doi: 10.1109/PIMRC59610.2024.10817467.
|
[91] |
赵玉振, 陈龙永, 张福博. 一种基于OFDM-chirp的雷达通信一体化波形设计与处理方法[J]. 雷达学报, 2021, 10(3): 453–466. doi: 10.12000/JR21028.
ZHAO Yuzhen, CHEN Longyong, and ZHANG Fubo. A new method of joint radar and communication waveform design and signal processing based on OFDM-chirp[J]. Journal of Radars, 2021, 10(3): 453–466. doi: 10.12000/JR21028.
|
[92] |
HAN S H and LEE J H. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission[J]. IEEE Wireless Communications, 2005, 12(2): 56–65. doi: 10.1109/MWC.2005.1421929.
|
[93] |
BOURDOUX A, FENG Ruoyu, and BAUDUIN M. Low PAPR design for OFDM symbols with guard bands and baseband filtering[C]. 2024 IEEE Radar Conference, Denver, USA, 2024. doi: 10.1109/RadarConf2458775.2024.10548775.
|
[94] |
LI Wanlu, XIANG Zheng, and REN Peng. Waveform design for dual-function radar-communication system with Golay block coding[J]. IEEE Access, 2019, 7: 184053–184062. doi: 10.1109/ACCESS.2019.2960658.
|
[95] |
LAVERY S P and RATNARAJAH T. Remote sensing with constant-modulus OFDM signals from complementary sequences[C]. 2024 IEEE Radar Conference, Denver, USA, 2024. doi: 10.1109/RadarConf2458775.2024.10548669.
|
[96] |
HU Xiaoyan, MASOUROS C, LIU Fan, et al. Low-PAPR DFRC MIMO-OFDM waveform design for integrated sensing and communications[C]. IEEE International Conference on Communications, Seoul, Korea, Republic of, 2022: 1599–1604. doi: 10.1109/ICC45855.2022.9838548.
|
[97] |
CHEN Yating, WEN Cai, HUANG Yan, et al. Joint design of ISAC waveform under PAPR constraints[J]. China Communications, 2024, 21(7): 186–211. doi: 10.23919/JCC.fa.2023-0156.202407.
|
[98] |
TIAN Xuanxuan, ZHANG Tingting, ZHANG Qinyu, et al. HRRP-based extended target recognition in OFDM-based RadCom systems[C]. 2018 IEEE Global Communications Conference, Abu Dhabi, United Arab Emirates, 2018: 1–6. doi: 10.1109/GLOCOM.2018.8647263.
|
[99] |
VARSHNEY P, BABU P, and STOICA P. Low-PAPR OFDM waveform design for radar and communication systems[J]. IEEE Transactions on Radar Systems, 2023, 1: 69–74. doi: 10.1109/TRS.2023.3275210.
|
[100] |
HUANG Yixuan, HU Su, MA Shiyong, et al. Designing low-PAPR waveform for OFDM-based RadCom systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 6979–6993. doi: 10.1109/TWC.2022.3153606.
|
[101] |
YAO Rubing, WEI Zhiqing, SU Liyan, et al. Low-PAPR integrated sensing and communication waveform design[C]. 2023 IEEE Wireless Communications and Networking Conference, Glasgow, United Kingdom, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10119026.
|
[102] |
LIYANAARACHCHI S D, RIIHONEN T, BARNETO C B, et al. Optimized waveforms for 5G-6G communication with sensing: Theory, simulations and experiments[J]. IEEE Transactions on Wireless Communications, 2021, 20(12): 8301–8315. doi: 10.1109/TWC.2021.3091806.
|
[103] |
HU Yanmo, DENG Weibo, ZHANG J A, et al. Resource optimization for delay estimation in perceptive mobile networks[J]. IEEE Wireless Communications Letters, 2024, 13(1): 223–227. doi: 10.1109/LWC.2023.3325961.
|
[104] |
HUANG Zhe, WANG Kexuan, LIU An, et al. Joint pilot optimization, target detection and channel estimation for integrated sensing and communication systems[J]. IEEE Transactions on Wireless Communications, 2022, 21(12): 10351–10365. doi: 10.1109/TWC.2022.3183621.
|
[105] |
OZKAPTAN C D, EKICI E, ALTINTAS O, et al. OFDM pilot-based radar for joint vehicular communication and radar systems[C]. 2018 IEEE Vehicular Networking Conference, Taipei, China, 2018. doi: 10.1109/VNC.2018.8628347.
|
[106] |
WANG Changheng, ALTINTAS O, OZKAPTAN C D, et al. Multi-range joint automotive radar and communication using pilot-based OFDM radar[C]. 2020 IEEE Vehicular Networking Conference, New York, USA, 2020: 1–4. doi: 10.1109/VNC51378.2020.9318373.
|
[107] |
PU Zhiwei, WANG Wei, LAO Zhiwei, et al. Power allocation of integrated sensing and communication system for the internet of vehicles[J]. IEEE Transactions on Green Communications and Networking, 2024, 8(4): 1717–1728. doi: 10.1109/TGCN.2024.3391015.
|
[108] |
WANG Xuan and HAN Shengqian. Optimization of power allocation for OFDM based ISAC systems[C]. 2024 IEEE Global Communications Conference, Cape Town, South Africa, 2024: 5387–5392. doi: 10.1109/GLOBECOM52923.2024.10901655.
|
[109] |
SHI Chenguang, WANG Yijie, WANG Fei, et al. Joint optimization scheme for subcarrier selection and power allocation in multicarrier dual-function radar-communication system[J]. IEEE Systems Journal, 2021, 15(1): 947–958. doi: 10.1109/JSYST.2020.2984637.
|
[110] |
ZHU Jia, CUI Yuanhao, MU Junsheng, et al. Power minimization strategy based subcarrier allocation and power assignment for integrated sensing and communication[C]. 2023 IEEE Wireless Communications and Networking Conference, Glasgow, United Kingdom, 2023: 1–6. doi: 10.1109/WCNC55385.2023.10118989.
|
[111] |
ZHAO Qimin, LI Songqian, TANG Aimin, et al. Energy-efficient reference signal optimization for 5G V2X joint communication and sensing[C]. IEEE International Conference on Communications, Seoul, Republic of Korea, 2022: 1040–1045. doi: 10.1109/ICC45855.2022.9838978.
|
[112] |
STOICA P, HE Hao, and LI Jian. On designing sequences with impulse-like periodic correlation[J]. IEEE Signal Processing Letters, 2009, 16(8): 703–706. doi: 10.1109/LSP.2009.2021378.
|
[113] |
LIU Fan, XIONG Yifeng, LU Shihang, et al. Uncovering the iceberg in the sea: Fundamentals of pulse shaping and modulation design for random ISAC signals[J]. IEEE Transactions on Signal Processing, 2025, 73: 2511–2526. doi: 10.1109/TSP.2025.3580596.
|
[114] |
CHTERENTAL O and ÐOKOVIĆ D Ž. On orthostochastic, unistochastic and qustochastic matrices[J]. Linear Algebra and its Applications, 2008, 428(4): 1178–1201. doi: 10.1016/j.laa.2007.09.022.
|
[115] |
LIU Fan, ZHANG Ying, XIONG Yifeng, et al. CP-OFDM achieves the lowest average ranging sidelobe under QAM/PSK constellation[J]. IEEE Transactions on Information Theory. doi: 10.1109/TIT.2025.3591267.
|
[116] |
DECARLO L T. On the meaning and use of kurtosis[J]. Psychological Methods, 1997, 2(3): 292–307. doi: 10.1037/1082-989X.2.3.292.
|
[117] |
ABOU-FAYCAL I C, TROTT M D, and SHAMAI S. The capacity of discrete-time memoryless Rayleigh-fading channels[J]. IEEE Transactions on Information Theory, 2001, 47(4): 1290–1301. doi: 10.1109/18.923716.
|
[118] |
GURSOY M C, POOR H V, and VERDU S. Noncoherent Rician fading Channel-part II: Spectral efficiency in the low-power regime[J]. IEEE Transactions on Wireless Communications, 2005, 4(5): 2207–2221. doi: 10.1109/TWC.2005.853971.
|
[119] |
WEI Zhiqing, PIAO Jinghui, YUAN Xin, et al. Waveform design for MIMO-OFDM integrated sensing and communication system: An information theoretical approach[J]. IEEE Transactions on Communications, 2024, 72(1): 496–509. doi: 10.1109/TCOMM.2023.3317258.
|
[120] |
BAZZI A and CHAFII M. On integrated sensing and communication waveforms with tunable PAPR[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7345–7360. doi: 10.1109/TWC.2023.3250263.
|
[121] |
WANG Shixiong, DAI Wei, WANG Haowei, et al. Robust waveform design for integrated sensing and communication[J]. IEEE Transactions on Signal Processing, 2024, 72: 3122–3138. doi: 10.1109/TSP.2024.3410142.
|
[122] |
ZHANG Ruoyu, SHIM B, YUAN Weijie, et al. Integrated sensing and communication waveform design with sparse vector coding: Low sidelobes and ultra reliability[J]. IEEE Transactions on Vehicular Technology, 2022, 71(4): 4489–4494. doi: 10.1109/TVT.2022.3146280.
|
[123] |
BARRUECO J, MONTALBAN J, IRADIER E, et al. Constellation design for future communication systems: A comprehensive survey[J]. IEEE Access, 2021, 9: 89778–89797. doi: 10.1109/ACCESS.2021.3090774.
|
[124] |
CHO J and WINZER P J. Probabilistic constellation shaping for optical fiber communications[J]. Journal of Lightwave Technology, 2019, 37(6): 1590–1607. doi: 10.1109/JLT.2019.2898855.
|
[125] |
DU Zhen, LIU Fan, XIONG Yifeng, et al. Reshaping the ISAC tradeoff under OFDM signaling: A probabilistic constellation shaping approach[J]. IEEE Transactions on Signal Processing, 2024, 72: 4782–4797. doi: 10.1109/TSP.2024.3465499.
|
[126] |
XU Jingjing, DU Zhen, WANG Jie, et al. An experimental validation of ISAC with probabilistic constellation shaping under OFDM signaling[C]. 2024 IEEE International Conference on Unmanned Systems, Nanjing, China, 2024: 1579–1584. doi: 10.1109/ICUS61736.2024.10840131.
|
[127] |
LIAO Zihan, LIU Fan, LI Shuangyang, et al. Pulse shaping for random ISAC signals: The ambiguity function between symbols matters[J]. IEEE Transactions on Wireless Communications, 2025, 24(4): 2832–2846. doi: 10.1109/TWC.2024.3525440.
|
[128] |
GAUDIO L, KOBAYASHI M, CAIRE G, et al. On the effectiveness of OTFS for joint radar parameter estimation and communication[J]. IEEE Transactions on Wireless Communications, 2020, 19(9): 5951–5965. doi: 10.1109/TWC.2020.2998583.
|
[129] |
YUAN Weijie, ZHOU Lin, DEHKORDI S K, et al. From OTFS to DD-ISAC: Integrating sensing and communications in the delay Doppler domain[J]. IEEE Wireless Communications, 2024, 31(6): 152–160. doi: 10.1109/MWC.018.2300607.
|
[130] |
BEMANI A, KSAIRI N, and KOUNTOURIS M. Integrated sensing and communications with affine frequency division multiplexing[J]. IEEE Wireless Communications Letters, 2024, 13(5): 1255–1259. doi: 10.1109/LWC.2024.3367178.
|
[131] |
LEVANON N and MOZESON E. Radar Signals[M]. New York: John Wiley & Sons, 2004.
|
[132] |
LI Ang, SPANO D, KRIVOCHIZA J, et al. A tutorial on interference exploitation via symbol-level precoding: Overview, state-of-the-art and future directions[J]. IEEE Communications Surveys & Tutorials, 2020, 22(2): 796–839. doi: 10.1109/COMST.2020.2980570.
|
[133] |
CHUNG S T and GOLDSMITH A J. Degrees of freedom in adaptive modulation: A unified view[J]. IEEE Transactions on Communications, 2001, 49(9): 1561–1571. doi: 10.1109/26.950343.
|
[134] |
LI Ang and MASOUROS C. A two-stage vector perturbation scheme for adaptive modulation in downlink MU-MIMO[J]. IEEE Transactions on Vehicular Technology, 2016, 65(9): 7785–7791. doi: 10.1109/TVT.2015.2489263.
|
[135] |
MASOUROS C and ZHENG Gan. Exploiting known interference as green signal power for downlink beamforming optimization[J]. IEEE Transactions on Signal Processing, 2015, 63(14): 3628–3640. doi: 10.1109/TSP.2015.2430839.
|
[136] |
MENG Kaitao, MASOUROS C, CHEN Guangji, et al. Network-level integrated sensing and communication: Interference management and BS coordination using stochastic geometry[J]. IEEE Transactions on Wireless Communications, 2024, 23(12): 19365–19381. doi: 10.1109/TWC.2024.3483031.
|
[137] |
MENG Kaitao, MASOUROS C, PETROPULU A P, et al. Cooperative ISAC networks: Opportunities and challenges[J]. IEEE Wireless Communications, 2025, 32(3): 212–219. doi: 10.1109/MWC.008.2400151.
|
[138] |
HUANG Yi, FANG Yuan, LI Xinmin, et al. Coordinated power control for network integrated sensing and communication[J]. IEEE Transactions on Vehicular Technology, 2022, 71(12): 13361–13365. doi: 10.1109/TVT.2022.3194139.
|
[139] |
LYU Zhonghao, ZHU Guangxu, and XU Jie. Joint maneuver and beamforming design for UAV-enabled integrated sensing and communication[J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2424–2440. doi: 10.1109/TWC.2022.3211533.
|
[140] |
WU Kai, PEGORARO J, MENEGHELLO F, et al. Sensing in bistatic ISAC systems with clock asynchronism: A signal processing perspective[J]. IEEE Signal Processing Magazine, 2024, 41(5): 31–43. doi: 10.1109/MSP.2024.3418725.
|
[141] |
LUO Chenhao, WANG Chongrui, TANG Aimin, et al. Experimental study on reference-path-aided system calibration for mmWave bistatic ISAC systems[C]. 2025 IEEE Global Communications Conference, Taipei, China, 2025: 1–6.
|
[142] |
HUA Haocheng, XU Jie, and HAN T X. Optimal transmit beamforming for integrated sensing and communication[J]. IEEE Transactions on Vehicular Technology, 2023, 72(8): 10588–10603. doi: 10.1109/TVT.2023.3262513.
|
[143] |
WEI Zhiqing, YAO Rubing, YUAN Xin, et al. Precoding optimization for MIMO-OFDM integrated sensing and communication systems[J]. IEEE Transactions on Cognitive Communications and Networking, 2025, 11(1): 288–299. doi: 10.1109/TCCN.2024.3445376.
|
[144] |
张若愚, 袁伟杰, 崔原豪, 等. 面向6G的大规模MIMO通信感知一体化: 现状与展望[J]. 移动通信, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.
ZHANG Ruoyu, YUAN Weijie, CUI Yuanhao, et al. Integrated sensing and communications with massive MIMO for 6G: Status and prospect[J]. Mobile Communications, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.
|
[145] |
ZHANG Ruoyu, CHENG Lei, WANG Shuai, et al. Integrated sensing and communication with massive MIMO: A unified tensor approach for channel and target parameter estimation[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8571–8587. doi: 10.1109/TWC.2024.3351856.
|
[146] |
ZHANG Ruoyu, WU Xiaopeng, LOU Yi, et al. Channel-training-aided target sensing for terahertz integrated sensing and massive MIMO communications[J]. IEEE Internet of Things Journal, 2025, 12(4): 3755–3770. doi: 10.1109/JIOT.2024.3447584.
|