Citation: | WANG Jie, ZHANG Zhiyu, JIANG Yang, et al. Accuracy assessment of the antarctic digital elevation model based on the ICESat-2 elevation data[J]. Journal of Radars, 2025, 14(3): 576–588. doi: 10.12000/JR25068 |
[1] |
刘卓, 李佳, 张翔, 等. 利用TanDEM-X影像和ICESat-2高程数据获取南极高精度数字高程模型[J]. 测绘通报, 2022(4): 72–76. doi: 10.13474/j.cnki.11-2246.2022.0113.
LIU Zhuo, LI Jia, ZHANG Xiang, et al. Obtaining high-precision digital elevation model in Antarctica based on TanDEM-X images and ICESat-2 data[J]. Bulletin of Surveying and Mapping, 2022(4): 72–76. doi: 10.13474/j.cnki.11-2246.2022.0113.
|
[2] |
CUI Xiangbin, JEOFRY H, GREENBAUM J S, et al. Bed topography of princess elizabeth land in east Antarctica[J]. Earth System Science Data, 2020, 12(4): 2765–2774. doi: 10.5194/essd-12-2765-2020.
|
[3] |
MORALES A, FIERREZ J, SÁNCHEZ J S, et al. Pattern Recognition and Image Analysis: 9th Iberian Conference, IbPRIA 2019, Madrid, Spain, July 1–4, 2019, Proceedings, Part I[M]. Cham: Springer, 2019. doi: 10.1007/978-3-030-31332-6.
|
[4] |
HUANG Lanqing and HAJNSEK I. A study of sea ice topography in the Weddell and Ross seas using dual-polarimetric TanDEM-X imagery[J]. The Cryosphere, 2024, 18(7): 3117–3140. doi: 10.5194/tc-18-3117-2024.
|
[5] |
FAN Yubin, KE Changqing, and SHEN Xiaoyi. A new Greenland digital elevation model derived from ICESat-2 during 2018–2019[J]. Earth System Science Data, 2022, 14(2): 781–794. doi: 10.5194/essd-14-781-2022.
|
[6] |
SHEN Xiaoyi, KE Changqing, FAN Yubin, et al. A new digital elevation model (DEM) dataset of the entire Antarctic continent derived from ICESat-2[J]. Earth System Science Data, 2022, 14(7): 3075–3089. doi: 10.5194/essd-14-3075-2022.
|
[7] |
DONG Yuting, ZHAO Ji, LI Caiyong, et al. Gapless-REMA100: A gapless 100-m reference elevation model of Antarctica with voids filled by multi-source DEMs[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 186: 70–82. doi: 10.1016/j.isprsjprs.2022.01.024.
|
[8] |
ZWALLY H J, MAJOR J A, BRENNER A C, et al. Ice measurements by geosat radar altimetry[J]. Johns Hopkins APL Technical Digest, 1987, 2: 251–254.
|
[9] |
LIU Hongxing, JEZEK K C, and LI Biyan. Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B10): 23199–23213. doi: 10.1029/1999JB900224.
|
[10] |
DIMARZIO J P. GLAS/ICESat 500 m laser altimetry digital elevation model of Antarctica, version 1[R]. NSIDC-0304, 2007. doi: 10.5067/K2IMI0L24BRJ.
|
[11] |
YU J, LIU Hongxing, and WANG Lei, et al. Blue ice areas and their topographical properties in the Lambert glacier, Amery Iceshelf system using Landsat ETM+, ICESat laser altimetry and ASTER GDEM data[J]. Antarctic Science, 2012, 24(1): 95–110. doi: 10.1017/S0954102011000630.
|
[12] |
YANG Kang, SMITH L C, FETTWEIS X, et al. Surface meltwater runoff on the Greenland ice sheet estimated from remotely sensed supraglacial lake infilling rate[J]. Remote Sensing of Environment, 2019, 234: 111459. doi: 10.1016/j.rse.2019.111459.
|
[13] |
LV Jinhao, LI Shaoyu, WANG Xiaoming, et al. Long-term satellite-derived bathymetry of Arctic supraglacial lake from ICESat-2 and Sentinel-2[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2024, XLVIII-1-2024: 469–477. doi: 10.5194/isprs-archives-XLVIII-1-2024-469-2024.
|
[14] |
LEESON A A, SHEPHERD A, PALMER S, et al. Simulating the growth of supraglacial lakes at the western margin of the Greenland ice sheet[J]. The Cryosphere, 2012, 6(5): 1077–1086. doi: 10.5194/tc-6-1077-2012.
|
[15] |
HOWAT I M, PORTER C, SMITH B E, et al. The reference elevation model of Antarctica[J]. The Cryosphere, 2019, 13(2): 665–674. doi: 10.5194/tc-13-665-2019.
|
[16] |
LI Yi, FU Haiqing, ZHU Jianjun, et al. A method for SRTM DEM elevation error correction in forested areas using ICESat-2 data and vegetation classification data[J]. Remote Sensing, 2022, 14(14): 3380. doi: 10.3390/rs14143380.
|
[17] |
LIU Zhiwei, ZHU Jianjun, FU Haiqiang, et al. Evaluation of the vertical accuracy of open global DEMs over steep terrain regions using ICESat data: A case study over Hunan Province, China[J]. Sensors, 2020, 20(17): 4865. doi: 10.3390/s20174865.
|
[18] |
CHEN Jun, XIONG Liyang, LI Sijin, et al. Global open-access DEM vertical elevation and along track neighbouring structure evaluations in the Tibetan Plateau using ICESat‐2 ATL03 points[J]. Earth Surface Processes and Landforms, 2025, 50(2): e6062. doi: 10.1002/esp.6062.
|
[19] |
FOUNTAIN A G, NYLEN T H, MONAGHAN A, et al. Snow in the McMurdo Dry Valleys, Antarctica[J]. International Journal of Climatology, 2010, 30(5): 633–642. doi: 10.1002/joc.1933.
|
[20] |
SCHENK T, CSATHO B, and NEUMANN T. Assessment of ICESat-2’s horizontal accuracy using precisely surveyed terrains in McMurdo Dry Valleys, Antarctica[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4303811. doi: 10.1109/TGRS.2022.3147722.
|
[21] |
LI Song, LIAO Jingjuan, and ZHANG Lianchong. Extraction and analysis of elevation changes in Antarctic ice sheet from CryoSat-2 and Sentinel-3 radar altimeters[J]. Journal of Applied Remote Sensing, 2022, 16(3): 034514. doi: 10.1117/1.JRS.16.034514.
|
[22] |
NILSSON J, GARDNER A S, and PAOLO F S. Elevation change of the Antarctic ice sheet: 1985 to 2020[J]. Earth System Science Data, 2022, 14(8): 3573–3598. doi: 10.5194/essd-14-3573-2022.
|
[23] |
SMITH B, FRICKER H A, HOLSCHUH N, et al. Land ice height-retrieval algorithm for NASA’s ICESat-2 photon-counting laser altimeter[J]. Remote Sensing of Environment, 2019, 233: 111352. doi: 10.1016/j.rse.2019.111352.
|
[24] |
KOENIG L, MARTIN S, STUDINGER M, et al. Polar airborne observations fill gap in satellite data[J]. Eos, Transactions American Geophysical Union, 2010, 91(38): 333–334. doi: 10.1029/2010EO380002.
|
[25] |
BLANKENSHIP D D, KEMPF S D, YOUNG D A, et al. IceBridge Riegl laser altimeter L2 geolocated surface elevation triplets, version 1[R]. ILUTP2, 2012. doi: 10.5067/JV9DENETK13E.
|
[26] |
LEVINSEN J F, HOWAT I M, and TSCHERNING C C. Improving maps of ice-sheet surface elevation change using combined laser altimeter and stereoscopic elevation model data[J]. Journal of Glaciology, 2013, 59(215): 524–532. doi: 10.3189/2013JoG12J114.
|
[27] |
WESSEL B, HUBER M, WOHLFART C, et al. Accuracy assessment of the global TanDEM-X digital elevation model with GPS data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139: 171–182. doi: 10.1016/j.isprsjprs.2018.02.017.
|
[28] |
GARDNER C S. Ranging performance of satellite laser altimeters[J]. IEEE Transactions on Geoscience and Remote Sensing, 1992, 30(5): 1061–1072. doi: 10.1109/36.175341.
|
[29] |
MARKUS T, NEUMANN T, MARTINO A, et al. The ice, cloud, and land elevation satellite-2 (ICESat-2): Science requirements, concept, and implementation[J]. Remote Sensing of Environment, 2017, 190: 260–273. doi: 10.1016/j.rse.2016.12.029.
|
[30] |
SHEN X, KE C Q, YU X, et al. Evaluation of ice, cloud, and land elevation satellite-2 (ICESat-2) land ice surface heights using Airborne Topographic Mapper (ATM) data in Antarctica[J]. International Journal of Remote Sensing, 2021, 42(7): 2556–2573. doi: 10.1080/01431161.2020.1856962.
|
[31] |
VARGA M and BAŠIĆ T. Accuracy validation and comparison of global digital elevation models over Croatia[J]. International Journal of Remote Sensing, 2015, 36(1): 170–189. doi: 10.1080/01431161.2014.994720.
|
[32] |
AFSHARNIA H, AREFI H, and ABBASI M. Geometric correction of satellite stereo images by DEM matching without ground control points and map projection step: Tested on Cartosat-1 images[J]. Earth Science Informatics, 2022, 15(2): 1183–1199. doi: 10.1007/s12145-022-00799-3.
|
[33] |
YE Jiang, QIANG Yuxuan, ZHANG Rui, et al. High-precision digital surface model extraction from satellite stereo images fused with ICESat-2 data[J]. Remote Sensing, 2021, 14(1): 142. doi: 10.3390/rs14010142.
|
[34] |
HABIB M. Evaluation of DEM interpolation techniques for characterizing terrain roughness[J]. CATENA, 2021, 198: 105072. doi: 10.1016/j.catena.2020.105072.
|
[35] |
陈昊楠, 许诗枫, 黄艳, 等. ASTER GDEM V2的南极冰川高程误差校正及精度分析[J]. 遥感学报, 2020, 24(8): 1010–1022. doi: 10.11834/jrs.20208361.
CHEN Haonan, XU Shifeng, HUANG Yan, et al. Vertical accuracy correction and analysis of ASTER GDEM V2 over Antarctic glacier[J]. Journal of Remote Sensing (Chinese), 2020, 24(8): 1010–1022. doi: 10.11834/jrs.20208361.
|
[36] |
DALIAKOPOULOS I N and TSANIS I K. A SIFT-based DEM extraction approach using GEOEYE-1 satellite stereo pairs[J]. Sensors, 2019, 19(5): 1123. doi: 10.3390/s19051123.
|
[37] |
ANAND V, OINAM B, and WIEPRECHT S. Assessment and comparison of DEM generated using cartosat-1 stereo pair data for hydrological applications[J]. Journal of the Indian Society of Remote Sensing, 2023, 51(3): 483–496. doi: 10.1007/s12524-022-01639-z.
|