Citation: | WU Junjie, YANG Jianyu, LI Zhongyu, et al. Review of bistatic synthetic aperture radar imaging methods[J]. Journal of Radars, 2025, 14(5): 1115–1141. doi: 10.12000/JR25067 |
[1] |
WU Junjie, YANG Jianyu, HUANG Yulin, et al. Bistatic forward-looking SAR: Theory and challenges[C]. IEEE Radar Conference, Pasadena, USA, 2009: 1–4. Doi: 10.1109/RADAR.2009.4976959.
|
[2] |
杨建宇. 双基合成孔径雷达[M]. 北京: 国防工业出版社, 2017: 1–53.
YANG Jianyu. Bistatic Synthetic Aperture Radar[M]. Beijing: National Defense Industry Press, 2017.
|
[3] |
WU Junjie, YANG Jianyu, YANG Haiguang, et al. Optimal geometry configuration of bistatic forward-looking SAR[C]. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Taipei, China, 2009: 1117–1120. Doi: 10.1109/ICASSP.2009.4959784.
|
[4] |
CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Norwood, MA, USA: Artech House, 2005: 1-20 .
|
[5] |
YANG Jianyu, HUANG Yulin, YANG Haiguang, et al. A first experiment of airborne bistatic forward-looking SAR - preliminary results[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS, Melbourne, Australia, 2013: 4202–4204. Doi: 10.1109/IGARSS.2013.6723760.
|
[6] |
QIU Xiaolan, HU Donghui, and DING Chibiao. Some reflections on bistatic SAR of forward-looking configuration[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 735–739. doi: 10.1109/LGRS.2008.2004506.
|
[7] |
D'ARIA D, GUARNIERI A M, and ROCCA F. Focusing bistatic synthetic aperture radar using dip move out[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(7): 1362–1376. doi: 10.1109/TGRS.2004.830166.
|
[8] |
BAMLER R, MEYER F, and LIEBHART W. Processing of BISTATIC SAR data from quasi-stationary configurations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3350–3358. doi: 10.1109/TGRS.2007.895436.
|
[9] |
QIU Xiaolan, HU Donghui, and DING Chibiao. Focusing bistaitc images use RDA based on hyperbolic approximating[C]. 2006 CIE International Conference on Radar, Shanghai, China, 2006: 1–4. Doi: 10.1109/ICR.2006.343160.
|
[10] |
LOFFELD O, NIES H, PETERS V, et al. Models and useful relations for bistatic SAR processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(10): 2031–2038. doi: 10.1109/TGRS.2004.835295.
|
[11] |
NEO Y L, WONG F, and CUMMING I G. A Two-dimensional spectrum for bistatic SAR processing using series reversion[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(1): 93–96. doi: 10.1109/LGRS.2006.885862.
|
[12] |
RODRIGUEZ-CASSOLA M, KRIEGER G, and WENDLER M. Azimuth-invariant, bistatic airborne SAR processing strategies based on monostatic algorithms[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea (South), 2005: 1047–1050. Doi: 10.1109/IGARSS.2005.1525294.
|
[13] |
DING Jinshan, LOFFELD O, KNEDLIK S, et al. Focusing bistatic SAR data in the wavenumber domain using linearized weighted LBF[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–6. Doi: 10.1109/RADAR.2009.4977059.
|
[14] |
WALTERSCHEID I, ENDER J H G, BRENNER A R, et al. Bistatic SAR processing using an omega-K type algorithm[C]. 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea (South), 2005: 1064–1067. Doi: 10.1109/IGARSS.2005.1525298.
|
[15] |
WALTERSCHEID I, ENDER J H G, BRENNER A R, et al. Bistatic SAR processing and experiments[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2710–2717. doi: 10.1109/TGRS.2006.881848.
|
[16] |
WANG R, LOFFELD O, NIES H, et al. Chirp-scaling algorithm for bistatic SAR data in the constant-offset configuration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(3): 952–964. doi: 10.1109/TGRS.2008.2006275.
|
[17] |
CHEN Shichao, WU Qisong, ZHOU Peng, et al. A new look at Loffeld's bistatic formula in tandem configuration[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 710–714. doi: 10.1109/LGRS.2011.2179285.
|
[18] |
ZARE A, MASNADI-SHIRAZI M A, and SAMADI S. Chirp scaling algorithm for processing bistatic SAR data based on Loffeld's bistatic formula[C]. The 9th European Conference on Synthetic Aperture Radar, Nuremberg, Germany, 2012: 780–783.
|
[19] |
WU Junjie, LI Zhongyu, HUANG Yulin, et al. An omega-K algorithm for translational invariant bistatic SAR based on generalized Loffeld's bistatic formula[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6699–6714. doi: 10.1109/TGRS.2014.2301433.
|
[20] |
WU Junjie, PU Wei, HUANG Yulin, et al. Bistatic forward-looking SAR focusing using ω-k based on spectrum modeling and optimization[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4500–4512. doi: 10.1109/JSTARS.2018.2873645.
|
[21] |
ENDER J H G. A step to bistatic SAR processing[C]. Eur. Conf. Synthetic Aperture Radar, Ulm, Germany, 2004: 356–359.
|
[22] |
NEO Y L, WONG F H, and CUMMING I G. Processing of azimuth-invariant bistatic SAR data using the range doppler algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(1): 14–21. doi: 10.1109/TGRS.2007.909090.
|
[23] |
李燕平, 邢孟道, 井伟, 等. 一种双基SAR的SR-ECS成像算法[J]. 自然科学进展, 2008, 18(3): 323–333. doi: 10.3321/j.issn:1002-008X.2008.03.011.
LI Yanping, XING Mengdao, JING Wei, et al. An SR-ECS imaging algorithm for dual-baseline SAR[J]. Progress in Natural Science, 2008, 18(3): 323–333. doi: 10.3321/j.issn:1002-008X.2008.03.011.
|
[24] |
ZHONG Hua and LIU Xingzhao. An extended nonlinear chirp-scaling algorithm for focusing large-baseline azimuth-invariant bistatic SAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 548–552. doi: 10.1109/LGRS.2009.2021676.
|
[25] |
LIU Baochang, WANG Tong, WU Qisong, et al. Bistatic SAR data focusing using an omega-K algorithm based on method of series reversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2899–2912. doi: 10.1109/TGRS.2009.2017522.
|
[26] |
BAMLER R, MEYER F, and LIEBHART W. No math: Bistatic SAR processing using numerically computed transfer functions[C]. 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, USA, 2006: 1844–1847. Doi: 10.1109/IGARSS.2006.476.
|
[27] |
ENDER J H G, WALTERSCHEID I, and BRENNER A R. Bistatic SAR–translational invariant processing and experimental results[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(3): 177–183. doi: 10.1049/ip-rsn:20050052.
|
[28] |
WU Junjie, YANG Jianyu, HUANG Yulin, et al. Focusing bistatic forward-looking SAR using chirp scaling algorithm[C]. 2011 IEEE RadarCon (RADAR), Kansas City, USA, 2011: 1036–1039. Doi: 10.1109/RADAR.2011.5960693.
|
[29] |
NATROSHVILI K, LOFFELD O, NIES H, et al. Focusing of general bistatic SAR configuration data with 2-D inverse scaled FFT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(10): 2718–2727. doi: 10.1109/TGRS.2006.872725.
|
[30] |
WONG F H, CUMMING I G, and NEO Y L. Focusing bistatic SAR data using the nonlinear chirp scaling algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(9): 2493–2505. doi: 10.1109/TGRS.2008.917599.
|
[31] |
MEI Haiwen, LI Yachao, XING Mengdao, et al. A new nonlinear chirp scaling algorithm for translational variant bistatic forward-looking SAR with dive trajectory[C]. The 6th Asia-Pacific Conference on Synthetic Aperture Radar, Xiamen, China, 2019: 1–5. Doi: 10.1109/APSAR46974.2019.9048476.
|
[32] |
WANG Zhigui, LIU Mei, AI Gengting, et al. Focusing of bistatic SAR with curved trajectory based on extended azimuth nonlinear chirp scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(6): 4160–4179. doi: 10.1109/TGRS.2019.2961562.
|
[33] |
WU Junjie, SUN Zhichao, LI Zhongyu, et al. Focusing translational variant bistatic forward-looking SAR using keystone transform and extended nonlinear chirp scaling[J]. Remote Sensing, 2016, 8(10): 840. doi: 10.3390/rs8100840.
|
[34] |
MEI Haiwen, LI Yachao, XING Mengdao, et al. A frequency-domain imaging algorithm for translational variant bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1502–1515. doi: 10.1109/TGRS.2019.2943743.
|
[35] |
WU Junjie, LI Zhongyu, HUANG Yulin, et al. A generalized omega-K algorithm to process translationally variant bistatic-SAR data based on two-dimensional Stolt mapping[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6597–6614. doi: 10.1109/TGRS.2014.2299069.
|
[36] |
LI Yachao, ZHANG Tinghao, MEI Haiwen, et al. Focusing translational-variant bistatic forward- looking SAR data using the modified omega-K algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5203916. doi: 10.1109/TGRS.2021.3063780.
|
[37] |
YARMAN C E, YAZICI B, and CHENEY M. Bistatic synthetic aperture radar imaging for arbitrary flight trajectories[J]. IEEE Transactions on Image Processing, 2008, 17(1): 84–93. doi: 10.1109/TIP.2007.911812.
|
[38] |
VU V T and PETTERSSON M I. Fast backprojection algorithms based on subapertures and local polar coordinates for general bistatic airborne SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(5): 2706–2712. doi: 10.1109/TGRS.2015.2504787.
|
[39] |
ULANDER L M H, HELLSTEN H, and STENSTROM G. Synthetic-aperture radar processing using fast factorized back-projection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(3): 760–776. doi: 10.1109/TAES.2003.1238734.
|
[40] |
ULANDER L M H, FROELIND P O, GUSTAVSSON A, et al. Fast factorized back-projection for bistatic SAR processing[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
|
[41] |
RODRIGUEZ-CASSOLA M, PRATS P, KRIEGER G, et al. Efficient time-domain image formation with precise topography accommodation for general bistatic SAR configurations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2949–2966. doi: 10.1109/TAES.2011.6034676.
|
[42] |
PU Wei, WU Junjie, HUANG Yulin, et al. Fast factorized backprojection imaging algorithm integrated with motion trajectory estimation for bistatic forward-looking SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(10): 3949–3965. doi: 10.1109/JSTARS.2019.2945118.
|
[43] |
SUN Huarui, SUN Zhichao, CHEN Zhichao, et al. An efficient backprojection algorithm based on wavenumber-domain spectral splicing for monostatic and bistatic SAR configurations[J]. Remote Sensing, 2022, 14(8): 1885. doi: 10.3390/rs14081885.
|
[44] |
FISHER D F. Fifty years of flight research: An annotated bibliography of technical publications of NASA Dryden flight research center, 1946-1996[R]. National Aeronautics and Space Administration, Dryden Flight Research Center, 1999.
|
[45] |
DOOLAN C J. Hypersonic missile performance and sensitivity analysis[J]. Journal of Spacecraft and Rockets, 2007, 44(1): 81–87. doi: 10.2514/1.23160.
|
[46] |
SCHMISSEUR J D. Hypersonics into the 21st century: A perspective on AFOSR-sponsored research in aerothermodynamics[J]. Progress in Aerospace Sciences, 2015, 72: 3–16. doi: 10.1016/j.paerosci.2014.09.009.
|
[47] |
TIAN Bailing, FAN Wenru, SU Rui, et al. Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase[J]. IEEE Transactions on Industrial Electronics, 2015, 62(3): 1639–1650. doi: 10.1109/TIE.2014.2341553.
|
[48] |
XU Xuefei, LIAO Guisheng, YANG Zhiwei, et al. Moving-in-pulse duration model-based target integration method for HSV-borne high-resolution radar[J]. Digital Signal Processing, 2017, 68: 31–43. doi: 10.1016/j.dsp.2017.05.007.
|
[49] |
邓欢, 李亚超, 梅海文, 等. 弹载曲线轨迹双基SAR反向滤波PFA成像与图像畸变校正算法[J]. 电子与信息学报, 2018, 40(11): 2638–2644. doi: 10.11999/JEIT170994.
DENG Huan, LI Yachao, MEI Haiwen, et al. New back-filtering PFA imaging algorithm and distortion correction method for missile-borne bistatic SAR with curved track[J]. Journal of Electronics & Information Technology, 2018, 40(11): 2638–2644. doi: 10.11999/JEIT170994.
|
[50] |
ZHANG Qianghui, WU Junjie, YANG Jianyu, et al. Non-stop-and-go echo model for hypersonic-vehicle-borne bistatic forward-looking Sar[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 545–548. Doi: 10.1109/IGARSS.2018.8517465.
|
[51] |
ZHANG Qianghui, WU Junjie, QU Jingyi, et al. Echo model without stop-and-go approximation for bistatic SAR with maneuvers[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(7): 1056–1060. doi: 10.1109/LGRS.2019.2891510.
|
[52] |
张强辉. 高速机动平台双基前视SAR成像方法研究[D]. [博士论文], 电子科技大学, 2019. Doi: 10.27005/d.cnki.gdzku.2019.000037.
ZHANG Qianghui. Imaging method research for bistatic forward-looking SAR mounted on high-speed maneuvering platform[D]. [Ph.D. dissertation], University of Electronic Science and Technology, 2019. Doi: 10.27005/d.cnki.gdzku.2019.000037.
|
[53] |
FENG Dong, AN Daoxiang, and HUANG Xiaotao. An extended fast factorized back projection algorithm for missile-borne bistatic forward-looking SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2724–2734. doi: 10.1109/TAES.2018.2828238.
|
[54] |
DENG Huan, LI Yachao, LIU Mengqi, et al. A space-variant phase filtering imaging algorithm for missile-borne BiSAR with arbitrary configuration and curved track[J]. IEEE Sensors Journal, 2018, 18(8): 3311–3326. doi: 10.1109/JSEN.2018.2809508.
|
[55] |
CHEN Si, YUAN Yue, ZHANG Shuning, et al. A new imaging algorithm for forward-looking missile-borne bistatic SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(4): 1543–1552. doi: 10.1109/JSTARS.2015.2507260.
|
[56] |
ZHANG Qianghui, WU Junjie, LI Zhongyu, et al. PFA for bistatic forward-looking SAR mounted on high-speed maneuvering platforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6018–6036. doi: 10.1109/TGRS.2019.2903878.
|
[57] |
MAO Xinhua, ZHU Daiyin, and ZHU Zhaoda. Polar format algorithm wavefront curvature compensation under arbitrary radar flight path[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 1382–1385. Doi: 10.1109/CIE-Radar.2011.6159816.
|
[58] |
MIAO Yuxuan, WU Junjie, LI Zhongyu, et al. A generalized wavefront-curvature-corrected polar format algorithm to focus bistatic SAR under complicated flight paths[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3757–3771. doi: 10.1109/JSTARS.2020.2999966.
|
[59] |
WANG Xin, ZHU Daiyin, MAO Xinhua, et al. Space-variant filtering for wavefront curvature correction in polar formatted bistatic SAR image[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 940–950. doi: 10.1109/TAES.2012.6178040.
|
[60] |
WU Junjie, SUN Zhichao, HE Hongyang, et al. Azimuth signal multichannel reconstruction and channel configuration design for geosynchronous spaceborne–airborne bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(4): 1861–1872. doi: 10.1109/TGRS.2018.2869835.
|
[61] |
AN Hongyang, WU Junjie, HE Zhiwei, et al. Geosynchronous spaceborne–airborne multichannel bistatic SAR imaging using weighted fast factorized backprojection method[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(10): 1590–1594. doi: 10.1109/LGRS.2019.2902036.
|
[62] |
WALTERSCHEID I, ESPETER T, KLARE J, et al. Bistatic spaceborne-airborne forward-looking SAR[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
|
[63] |
AN Hongyang, WU Junjie, TEH K C, et al. Geosynchronous spaceborne–airborne bistatic SAR imaging based on fast low-rank and sparse matrices recovery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5207714. doi: 10.1109/TGRS.2021.3081099.
|
[64] |
AN Hongyang, WU Junjie, SUN Zhichao, et al. A two-step nonlinear chirp scaling method for multichannel GEO spaceborne–airborne bistatic SAR spectrum reconstructing and focusing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(6): 3713–3728. doi: 10.1109/TGRS.2018.2886817.
|
[65] |
WANG R, LOFFELD O, NIES H, et al. Focusing results and analysis of advanced bistatic SAR experiments in spaceborne or airborne /airborne or stationary configurations[C]. The 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 2010: 1–4.
|
[66] |
WHILLS N J. Bistatic Radar[M]. Norwood: Artech House, 1991: 210–220.
|
[67] |
蒲巍. 机载双基地前视SAR运动补偿方法研究[D]. [博士论文], 电子科技大学, 2018.
PU Wei. Research on airborne bistatic forward-looking SAR motion compensation[D]. [Ph.D. dissertation], University of Electronic Science and Technology, 2018.
|
[68] |
ZHANG Heng, DENG Yunkai, WANG R, et al. Spaceborne/stationary bistatic SAR imaging with TerraSAR-X as an illuminator in staring-spotlight mode[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5203–5216. doi: 10.1109/TGRS.2016.2558294.
|
[69] |
BAUMGARTNER S V, RODRIGUEZ-CASSOLA M, NOTTENSTEINER A, et al. Bistatic experiment using TerraSAR-X and DLR's new F-SAR system[C]. The 7th European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2008: 1–4.
|
[70] |
XING Mengdao, JIANG Xiuwei, WU Renbiao, et al. Motion compensation for UAV SAR based on raw radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(8): 2870–2883. doi: 10.1109/TGRS.2009.2015657.
|
[71] |
ZENG Tao, HU Cheng, WU Lixin, et al. Extended NLCS algorithm of BiSAR systems with a squinted transmitter and a fixed receiver: Theory and experimental confirmation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(10): 5019–5030. doi: 10.1109/TGRS.2013.2276048.
|
[72] |
GUO Yukun, YU Ze, LI Jingwen, et al. Focusing spotlight-mode bistatic GEO SAR with a stationary receiver using time-Doppler resampling[J]. IEEE Sensors Journal, 2020, 20(18): 10766–10778. doi: 10.1109/JSEN.2020.2994752.
|
[73] |
TANG Shiyang, GUO Ping, ZHANG Linrang, et al. Modeling and precise processing for spaceborne transmitter/missile-borne receiver SAR signals[J]. Remote Sensing, 2019, 11(3): 346. doi: 10.3390/rs11030346.
|
[74] |
RODRIGUEZ-CASSOLA M, BAUMGARTNER S V, KRIEGER G, et al. Bistatic TerraSAR-X/F-SAR spaceborne–airborne SAR experiment: Description, data processing, and results[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 781–794. doi: 10.1109/TGRS.2009.2029984.
|
[75] |
SUN Zhichao, WU Junjie, LV Zheng, et al. Spaceborne-airborne bistatic SAR experiment using GF-3 illuminator: Description, processing and results[C]. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 2021: 2699–2702. Doi: 10.1109/IGARSS47720.2021.9554025.
|
[76] |
SAINI R, ZUO Rui, and CHERNIAKOV M. Development of space-surface bistatic synthetic aperture radar with GNSS trasmnitter of opportunity[C]. 2008 IEEE Radar Conference, Rome, Italy, 2008: 1–6. Doi: 10.1109/RADAR.2008.4721011.
|
[77] |
CHERNIAKOV M, ZENG T, and PLAKIDIS E. Galileo signal-based bistatic system for avalanche prediction[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium, Toulouse, France, 2003: 784–786. Doi: 10.1109/IGARSS.2003.1293917.
|
[78] |
ZENG Tao, ZHANG Tian, TIAN Weiming, et al. Space-surface bistatic SAR image enhancement based on repeat-pass coherent fusion with beidou-2/compass-2 as illuminators[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(12): 1832–1836. doi: 10.1109/LGRS.2016.2614337.
|
[79] |
ZHANG Qilei, CHANG Wenge, ZENG Zhangfan, et al. An integrative synchronization and imaging algorithm for GNSS-based BSAR[J]. Science China Information Sciences, 2015, 58(6): 1–15. doi: 10.1007/s11432-015-5319-5.
|
[80] |
MA Hui, ANTONIOU M, and CHERNIAKOV M. Passive GNSS-based SAR imaging and opportunities using Galileo E5 signals[J]. Science China Information Sciences, 2015, 58(6): 1–11. doi: 10.1007/s11432-015-5335-5.
|
[81] |
ZHOU Xinkai, CHEN Jie, WANG Pengbo, et al. An efficient imaging algorithm for GNSS-R Bi-static SAR[J]. Remote Sensing, 2019, 11(24): 2945. doi: 10.3390/rs11242945.
|
[82] |
KRIEGER G, MOREIRA A, FIEDLER H, et al. TanDEM-X: A satellite formation for high-resolution SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3317–3341. doi: 10.1109/TGRS.2007.900693.
|
[83] |
LI Chuang, ZHANG Heng, DENG Yunkai, et al. Focusing the L-band spaceborne bistatic SAR mission data using a modified RD algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(1): 294–306. doi: 10.1109/TGRS.2019.2936255.
|
[84] |
王志贵. 星载双基SAR多维成像技术的研究[D]. [博士论文], 哈尔滨工业大学, 2019. Doi: 10.27061/d.cnki.ghgdu.2019.000470.
WANG Zhigui. Research on multidimensional imaging technology of spaceborne bistatic SAR[D]. [Ph.D. dissertation], Harbin Institute of Technology, 2019. Doi: 10.27061/d.cnki.ghgdu.2019.000470.
|
[85] |
ELDHUSET K. Spaceborne bistatic SAR processing using the EETF4 algorithm[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(2): 194–198. doi: 10.1109/LGRS.2008.2010781.
|
[86] |
别博文, 刘江, 孙光才, 等. 基于奇异值分解的低轨星载双基调频连续波SAR成像方法[J]. 电子与信息学报, 2023, 45(7): 2502–2510. doi: 10.11999/JEIT220757.
BIE Bowen, LIU Jiang, SUN Guangcai, et al. Low-orbit bistatic frequency modulated continuous wave SAR imaging method based on singular value decomposition[J]. Journal of Electronics & Information Technology, 2023, 45(7): 2502–2510. doi: 10.11999/JEIT220757.
|
[87] |
RODRIGUEZ-CASSOLA M, PRATS P, SCHULZE D, et al. First bistatic spaceborne SAR experiments with TanDEM-X[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 33–37. doi: 10.1109/LGRS.2011.2158984.
|
[88] |
ZHOU Shimeng, CHEN Zhiyang, LI Yuanhao, et al. LT-1 differential tomography: First results and comparison between monostatic and bistatic systems[C]. 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Zhuhai, China, 2024: 1–6. Doi: 10.1109/ICSIDP62679.2024.10869107.
|
[89] |
ZHANG Yanyan, LI Junfeng, LU Pingping, et al. An advanced interferometric baseline estimation method (IBEM) for spaceborne bistatic SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 6115–6125. doi: 10.1109/JSTARS.2024.3399321.
|
[90] |
WANG Wenqin. GPS-based time & phase synchronization processing for distributed SAR[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1040–1051. doi: 10.1109/TAES.2009.5259181.
|
[91] |
槐超, 王文妍. InSAR编队卫星波束同步姿态策略分析[J]. 上海航天, 2015, 32(2): 22–27. doi: 10.3969/j.issn.1006-1630.2015.02.005.
HUAI Chao and WANG Wenyan. Attitude strategy of beam synchronization for InSAR satellites formation[J]. Aerospace Shanghai, 2015, 32(2): 22–27. doi: 10.3969/j.issn.1006-1630.2015.02.005.
|
[92] |
LIN Jinsong, CHEN Tao, LI Junao, et al. A space synchronization method based on sea clutter energy[C]. 2023 4th China International SAR Symposium (CISS), Xian, China, 2023: 1–5. Doi: 10.1109/CISS60136.2023.10380080.
|
[93] |
ESPETER T, WALTERSCHEID I, KLARE J, et al. Synchronization techniques for the bistatic spaceborne/airborne SAR experiment with TerraSAR-X and PAMIR[C]. 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 2007: 2160–2163. Doi: 10.1109/IGARSS.2007.4423262.
|
[94] |
ZHANG Yanyan, CHANG Sheng, WANG R, et al. An innovative push-to-talk (PTT) synchronization scheme for distributed SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5213313. doi: 10.1109/TGRS.2021.3099116.
|
[95] |
LI Wenchao, ZOU Desuo, LI Yi, et al. An estimation scheme of the linear time synchronization error for bistatic forward-looking SAR[C]. 2019 IEEE Radar Conference (RadarConf), Boston, USA, 2019: 1–3. Doi: 10.1109/RADAR.2019.8835569.
|
[96] |
WANG Yan, DING Zegang, LI Linghao, et al. First demonstration of single-pass distributed SAR tomographic imaging with a P-band UAV SAR prototype[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5238618. doi: 10.1109/TGRS.2022.3221859.
|
[97] |
WU Wanmin, PU Wei, WU Junjie, et al. A geometry and synchronization error decoupling and compensation approach for multistatic SAR imaging[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 15431–15442. doi: 10.1109/JSTARS.2024.3439876.
|
[98] |
PU Wei, WU Junjie, HUANG Yulin, et al. Motion errors and compensation for bistatic forward-looking SAR with cubic-order processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(12): 6940–6957. doi: 10.1109/TGRS.2016.2592536.
|
[99] |
FORNARO G. Trajectory deviations in airborne SAR: Analysis and compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(3): 997–1009. doi: 10.1109/7.784069.
|
[100] |
CANTALLOUBE H M J and NAHUM C E. Multiscale local map-drift-driven multilateration SAR autofocus using fast polar format image synthesis[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3730–3736. doi: 10.1109/TGRS.2011.2161319.
|
[101] |
.CANTALLOUBE H M J and NAHUM C E. Autofocusing of (inverse) synthetic aperture radar for motion compensation[C]. 1996 National Aerospace and Electronics Conference, Dayton, USA, 1996: 309–316. Doi: 10.1109/NAECON.1996.517663.
|
[102] |
DE MACEDO K A C, SCHEIBER R, and MOREIRA A. An autofocus approach for residual motion errors with application to airborne repeat-pass SAR interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(10): 3151–3162. doi: 10.1109/TGRS.2008.924004.
|
[103] |
FORNARO G, FRANCESCHETTI G, and PERNA S. On center-beam approximation in SAR motion compensation[J]. IEEE Geoscience and Remote Sensing Letters, 2006, 3(2): 276–280. doi: 10.1109/LGRS.2005.863391.
|
[104] |
RIGLING B D and MOSES R L. Motion measurement errors and autofocus in bistatic SAR[J]. IEEE Transactions on Image Processing, 2006, 15(4): 1008–1016. doi: 10.1109/TIP.2005.863943.
|
[105] |
.CHEN Shichao, LU Fugang, WANG Jun, et al. An improved phase gradient autofocus method for one-stationary bistatic SAR[C]. 2016 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Hong Kong, China, 2016: 1–5. doi: 10.1109/ICSPCC.2016.7753665.
|
[106] |
REIGBER A, ALIVIZATOS E, POTSIS A, et al. Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation[J]. IEE Proceedings-Radar, Sonar and Navigation, 2006, 153(3): 301–310. doi: 10.1049/ip-rsn:20045087.
|
[107] |
.DING Zegang, ZENG Tao, and YAO Di. Motion measurement errors in bistatic spotlight SAR[C]. 2009 IET International Radar Conference, Guilin, China, 2009: 1–4. doi: 10.1049/cp.2009.0099.
|
[108] |
MENG Zhichao, ZHANG Lei, LU Jingyue, et al. FL-PFA: A polar format algorithm for wide-beam forward-looking SAR imaging integrating spatial-variant motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5220313. doi: 10.1109/TGRS.2024.3446656.
|
[109] |
.LI F K, HELD D N, CURLANDER J C, et al. Doppler parameter estimation for spaceborne synthetic-aperture radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(1): 47–56. doi: 10.1109/TGRS.1985.289499.
|
[110] |
.CUMMING I G, KAVANAGH P F, and ITO M R. Resolving the Doppler ambiguity for spaceborne synthetic aperture radar[C]. International Geoscience and Remote Sensing Symposium, Zurich, Switzerland, 1986: 1639–1643.
|
[111] |
BAMLER R and RUNGE H. PRF-ambiguity resolving by wavelength diversity[J]. IEEE Transactions on Geoscience and Remote Sensing, 1991, 29(6): 997–1003. doi: 10.1109/36.101376.
|
[112] |
WONG F and CUMMING I G. A combined SAR Doppler centroid estimation scheme based upon signal phase[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(3): 696–707. doi: 10.1109/36.499749.
|
[113] |
KONG Y K, CHO B L, and KIM Y S. Ambiguity-free Doppler centroid estimation technique for airborne SAR using the radon transform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4): 715–721. doi: 10.1109/TGRS.2005.843955.
|
[114] |
WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752.
|
[115] |
SAMCZYNSKI P and KULPA K S. Coherent MapDrift technique[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(3): 1505–1517. doi: 10.1109/TGRS.2009.2032241.
|
[116] |
GAO Yang, YU Weidong, LIU Yabo, et al. Sharpness-based autofocusing for stripmap SAR using an adaptive-order polynomial model[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(6): 1086–1090. doi: 10.1109/LGRS.2013.2286410.
|
[117] |
XIONG Tao, XING Mengdao, WANG Yong, et al. Minimum-entropy-based autofocus algorithm for SAR data using Chebyshev approximation and method of series reversion, and its implementation in a data processor[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1719–1728. doi: 10.1109/TGRS.2013.2253781.
|
[118] |
DING Zegang, ZHU Kaiwen, ZHANG Tianyi, et al. An autofocus back projection algorithm for GEO SAR based on minimum entropy[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5226114. doi: 10.1109/TGRS.2022.3164922.
|
[119] |
MENG Zhichao, ZHANG Lei, MA Yan, et al. Accelerating minimum entropy autofocus with stochastic gradient for UAV SAR imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4017805. doi: 10.1109/LGRS.2021.3106636.
|
[120] |
YU Lei, ZHANG Yongsheng, ZHANG Qilei, et al. Minimum-entropy autofocusing based on Re-PSO for ionospheric scintillation mitigation in P-band SAR imaging[J]. IEEE Access, 2019, 7: 84580–84590. doi: 10.1109/ACCESS.2019.2924802.
|
[121] |
PU Wei, WU Junjie, HUANG Yulin, et al. Nonsystematic range cell migration analysis and autofocus correction for bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(11): 6556–6570. doi: 10.1109/TGRS.2018.2840424.
|
[122] |
LI Yi, LI Wenchao, SUN Zhichao, et al. An autofocus scheme of bistatic SAR considering cross-cell residual range migration[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4507905. doi: 10.1109/LGRS.2022.3173680.
|
[123] |
MAO Xinhua, SHI Tianyue, ZHAN Ronghui, et al. Structure-aided 2-D autofocus for airborne bistatic synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(9): 7500–7516. doi: 10.1109/TGRS.2020.3033383.
|
[124] |
BU Hongxia, TAO Ran, BAI Xia, et al. A novel SAR imaging algorithm based on compressed sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(5): 1003–1007. doi: 10.1109/LGRS.2014.2372319.
|
[125] |
SAMADI S, CETIN M, and MASNADI-SHIRAZI M A. Sparse representation-based synthetic aperture radar imaging[J]. IET Radar, Sonar & Navigation, 2011, 5(2): 182–193. doi: 10.1049/iet-rsn.2009.0235.
|
[126] |
CETIN M, STOJANOVIC I, ONHON O, et al. Sparsity-driven synthetic aperture radar imaging: Reconstruction, autofocusing, moving targets, and compressed sensing[J]. IEEE Signal Processing Magazine, 2014, 31(4): 27–40. doi: 10.1109/MSP.2014.2312834.
|
[127] |
DUMAN K and YAZICI B. Moving target artifacts in bistatic synthetic aperture radar images[J]. IEEE Transactions on Computational Imaging, 2015, 1(1): 30–43. doi: 10.1109/TCI.2015.2440995.
|
[128] |
WANG Xin and LI Haichao. Bistatic SAR moving targets refocus based on polar formatted phase error analysis and clutter separation[J]. IEEE Transactions on Computational Imaging, 2022, 8: 1170–1183. doi: 10.1109/TCI.2022.3230582.
|
[129] |
LI Zhongyu, WU Junjie, HUANG Yulin, et al. Ground-moving target imaging and velocity estimation based on mismatched compression for bistatic forward-looking SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(6): 3277–3291. doi: 10.1109/TGRS.2016.2514494.
|
[130] |
LI Junao, LI Zhongyu, YANG Qing, et al. Joint clutter suppression and moving target indication in 2-D azimuth rotated time domain for single-channel bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5202516. doi: 10.1109/TGRS.2023.3237553.
|
[131] |
CRISTALLINI D and WALTERSCHEID I. Joint monostatic and bistatic STAP for improved SAR-GMTI capabilities[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1834–1848. doi: 10.1109/TGRS.2015.2489247.
|
[132] |
LI Gang, XU Jia, PENG Yingning, et al. Bistatic linear antenna array SAR for moving target detection, location, and imaging with two passive airborne radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(3): 554–565. doi: 10.1109/TGRS.2006.888145.
|
[133] |
LI Zhongyu, WU Junjie, HUANG Yulin, et al. Nonsearching doppler parameter and velocity estimation method for synthetic aperture radar ground moving target imaging[J]. Journal of Applied Remote Sensing, 2016, 10(3): 035006. doi: 10.1117/1.JRS.10.035006.
|
[134] |
QIAN Guangzhao, WANG Yong, ZHANG Boya, et al. Bistatic forward-looking SAR imaging of uniformly moving target based on improved BP algorithm[J]. IEEE Transactions on Computational Imaging, 2023, 9: 1006–1017. doi: 10.1109/TCI.2023.3328279.
|
[135] |
LIU Zhutian, YE Hongda, LI Zhongyu, et al. Optimally matched space-time filtering technique for BFSAR nonstationary clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210617. doi: 10.1109/TGRS.2021.3090462.
|
[136] |
LI Junao, LI Zhongyu, YANG Haiguang, et al. Joint localization and tracking method for BiSAR-GMTI via transmitter-receiver trajectories extraction and inversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5220914. doi: 10.1109/TGRS.2024.3437635.
|
[137] |
YANG Qing, LI Zhongyu, LI Junao, et al. An optimal polar format refocusing method for bistatic SAR moving target imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5228417. doi: 10.1109/TGRS.2022.3176402.
|
[138] |
DAS S and SUGANTHAN P N. Differential evolution: A survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4–31. doi: 10.1109/TEVC.2010.2059031.
|
[139] |
.王雅慧, 杨青,李中余,等.双基SAR舰船目标成像时段寻优成像处理方法[J/OL].雷达学报, 1-23[2025-09-06]. https://link.cnki.net/urlid/10.1030.TN.20250217.0907.002.
WANG Yahui, YANG Qing, LI Zhongyu, et al. Imaging time optimization method for ship targets of bistatic SAR[J/OL]. Journal of Radars, 1-23[2025-09-06]. https://radars.ac.cn/article/doi/10.12000/JR24193.
|
[140] |
.SOUMEKH M. Bistatic synthetic aperture radar inversion with application in dynamic object imaging[C]. 1991 International Conference on Acoustics, Speech, and Signal Processing, Toronto, Canada, 1991: 2577–2580. doi: 10.1109/ICASSP.1991.150928.
|
[141] |
QIAN Guangzhao and WANG Yong. Monostatic-equivalent algorithm via Taylor expansion for BiSAR ship target imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5200919. doi: 10.1109/TGRS.2022.3233384.
|
[142] |
LI Zhongyu, ZHANG Xiaodong, YANG Qing, et al. Hybrid SAR-ISAR image formation via joint FrFT-WVD processing for BFSAR ship target high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5215713. doi: 10.1109/TGRS.2021.3117280.
|
[143] |
YANG Qing, LI Zhongyu, LI Junao, et al. Bistatic SAR maritime ship target 3-D image reconstruction method without distortion in local Cartesian coordinate[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5210018.
|
[144] |
PU Wei. SAE-Net: A deep neural network for SAR autofocus[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5220714. doi: 10.1109/TGRS.2021.3139914.
|
[145] |
PU Wei. Deep SAR imaging and motion compensation[J]. IEEE Transactions on Image Processing, 2021, 30: 2232–2247. doi: 10.1109/TIP.2021.3051484.
|
[146] |
SONG Yue, PU Wei, HUO Jiawei, et al. Deep parametric imaging for bistatic SAR: Model, property, and approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5212416. doi: 10.1109/TGRS.2024.3390236.
|