Citation: | YANG Fan, ZHANG Hongwei, LI Ziwang, et al. Inversion and validation of ocean surface bio-optical parameters using multiplatform ocean LiDAR[J]. Journal of Radars, 2025, 14(3): 562–575. doi: 10.12000/JR25064 |
[1] |
BEHRENFELD M J and BOSS E. Beam attenuation and chlorophyll concentration as alternative optical indices of phytoplankton biomass[J]. Journal of Marine Research, 2006, 64(3): 431–451. doi: 10.1357/002224006778189563.
|
[2] |
BREWIN R J W, DALL’OLMO G, PARDO S, et al. Underway spectrophotometry along the Atlantic Meridional Transect reveals high performance in satellite chlorophyll retrievals[J]. Remote Sensing of Environment, 2016, 183: 82–97. doi: 10.1016/j.rse.2016.05.005.
|
[3] |
LE Chengfeng, ZHOU Xueying, HU Chuanmin, et al. A color-index-based empirical algorithm for determining particulate organic carbon concentration in the ocean from satellite observations[J]. Journal of Geophysical Research: Oceans, 2018, 123(10): 7407–7419. doi: 10.1029/2018JC014014.
|
[4] |
DICKEY T, LEWIS M, and CHANG G. Optical oceanography: Recent advances and future directions using global remote sensing and in situ observations[J]. Reviews of Geophysics, 2006, 44(1): RG1001. doi: 10.1029/2003RG000148.
|
[5] |
VASILKOV A P, GOLDIN Y A, GUREEV B A, et al. Airborne polarized lidar detection of scattering layers in the ocean[J]. Applied Optics, 2001, 40(24): 4353–4364. doi: 10.1364/AO.40.004353.
|
[6] |
COLLISTER B L, ZIMMERMAN R C, SUKENIK C I, et al. Remote sensing of optical characteristics and particle distributions of the upper ocean using shipboard lidar[J]. Remote Sensing of Environment, 2018, 215: 85–96. doi: 10.1016/j.rse.2018.05.032.
|
[7] |
CHEN Peng and PAN Delu. Ocean optical profiling in South China Sea using airborne LiDAR[J]. Remote Sensing, 2019, 11(15): 1826. doi: 10.3390/rs11151826.
|
[8] |
LIU Qi, WU Songhua, LIU Bingyi, et al. Shipborne variable-FOV, dual-wavelength, polarized ocean lidar: Design and measurements in the Western Pacific[J]. Optics Express, 2022, 30(6): 8927–8948. doi: 10.1364/OE.449554.
|
[9] |
YUAN Dapeng, MAO Zhihua, CHEN Peng, et al. Remote sensing of seawater optical properties and the subsurface phytoplankton layer in coastal waters using an airborne multiwavelength polarimetric ocean lidar[J]. Optics Express, 2022, 30(16): 29564–29583. doi: 10.1364/OE.463146.
|
[10] |
ZHANG Kai, CHEN Yatong, ZHAO Hongkai, et al. Comprehensive, continuous, and vertical measurements of seawater constituents with triple-field-of-view high-spectral-resolution lidar[J]. Research, 2023, 6: 0201. doi: 10.34133/research.0201.
|
[11] |
SHANGGUAN Mingjia, LIAO Zhuoyang, GUO Yirui, et al. Sensing the profile of particulate beam attenuation coefficient through a single-photon oceanic Raman lidar[J]. Optics Express, 2023, 31(16): 25398–25414. doi: 10.1364/OE.493660.
|
[12] |
SHANGGUAN Mingjia, GUO Yirui, and LIAO Zhuoyang. Shipborne single-photon fluorescence oceanic lidar: Instrumentation and inversion[J]. Optics Express, 2024, 32(6): 10204–10218. doi: 10.1364/OE.515477.
|
[13] |
ZHAO Hongkai, ZHOU Yudi, GU Qiuling, et al. Lidar-observed diel vertical variations of inland chlorophyll a concentration[J]. Remote Sensing, 2024, 16(19): 3579. doi: 10.3390/rs16193579.
|
[14] |
SANG Xuan, MAO Zhihua, LI Youzhi, et al. Observations of optical properties and chlorophyll-a concentration in Qiandao Lake using shipborne lidar[J]. Remote Sensing, 2024, 16(24): 4663. doi: 10.3390/rs16244663.
|
[15] |
LI Xinye, CHEN Peng, ZHANG Zhenhua, et al. Vertical structure observation from spaceborne lidar ICESat-2 in East China Sea[J]. Optics Express, 2025, 33(2): 2847–2865. doi: 10.1364/OE.540111.
|
[16] |
ZHU Peizhi, TANG Junwu, SONG Xiaoquan, et al. Future spaceborne oceanographic lidar: Exploring the effects of large off-nadir angles on signal dynamic range and depth aliasing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 63: 5701711. doi: 10.1109/TGRS.2025.3545669.
|
[17] |
ZHOU Yudi, CHEN Weibiao, CUI Xiaoyu, et al. Validation of the analytical model of oceanic lidar returns: Comparisons with Monte Carlo simulations and experimental results[J]. Remote Sensing, 2019, 11(16): 1870. doi: 10.3390/rs11161870.
|
[18] |
HE Huixin, LIU Qi, TANG Junwu, et al. Validation of the polarized Monte Carlo model of shipborne oceanic lidar returns[J]. Optics Express, 2023, 31(26): 43250–43268. doi: 10.1364/OE.511445.
|
[19] |
CHEN Su, CHEN Peng, DING Lei, et al. A new semi-analytical mc model for oceanic LIDAR inelastic signals[J]. Remote Sensing, 2023, 15(3): 684. doi: 10.3390/rs15030684.
|
[20] |
LIU Qun, LIU Dong, BAI Jian, et al. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater[J]. Optics Express, 2018, 26(23): 30278–30291. doi: 10.1364/OE.26.030278.
|
[21] |
LIU Qun, CUI Xiaoyu, CHEN Weibiao, et al. A semianalytic Monte Carlo radiative transfer model for polarized oceanic lidar: Experiment-based comparisons and multiple scattering effects analyses[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2019, 237: 106638. doi: 10.1016/j.jqsrt.2019.106638.
|
[22] |
ZHOU Yudi, CHEN Yang, ZHAO Hongkai, et al. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties[J]. Light: Science & Applications, 2022, 11(1): 261. doi: 10.1038/s41377-022-00951-0.
|
[23] |
CHEN Yatong, CUI Xiaoyu, GU Qiuling, et al. This is MATE: A multiple scAttering correcTion rEtrieval algorithm for accurate lidar profiling of seawater optical properties[J]. Remote Sensing of Environment, 2024, 307: 114166. doi: 10.1016/j.rse.2024.114166.
|
[24] |
ZHANG Zhenhua, CHEN Peng, MAO Zhihua, et al. A novel fast multiple-scattering approximate model for oceanographic lidar[J]. Remote Sensing, 2021, 13(18): 3677. doi: 10.3390/rs13183677.
|
[25] |
COLLIS R T H and RUSSELL P B. Lidar Measurement of Particles and Gases by Elastic Backscattering and Differential Absorption[M]. HINKLEY E D. Laser Monitoring of the Atmosphere. Berlin, Heidelberg: Springer, 1976: 71–151. doi: 10.1007/3-540-07743-X_18.
|
[26] |
KLETT J D. Stable analytical inversion solution for processing lidar returns[J]. Applied Optics, 1981, 20(2): 211–220. doi: 10.1364/AO.20.000211.
|
[27] |
FERNALD F G, HERMAN B M, and REAGAN J A. Determination of aerosol height distributions by lidar[J]. Journal of Applied Meteorology, 1972, 11(3): 482–489. doi: 10.1175/1520-0450(1972)011<0482:DOAHDB>2.0.CO;2.
|
[28] |
MOREL A and MARITORENA S. Bio-optical properties of oceanic waters: A reappraisal[J]. Journal of Geophysical Research: Oceans, 2001, 106(C4): 7163–7180. doi: 10.1029/2000JC000319.
|
[29] |
GORDON H R. Interpretation of airborne oceanic lidar: Effects of multiple scattering[J]. Applied Optics, 1982, 21(16): 2996–3001. doi: 10.1364/AO.21.002996.
|
[30] |
WALKER R E and MCLEAN J W. Lidar equations for turbid media with pulse stretching[J]. Applied Optics, 1999, 38(12): 2384–2397. doi: 10.1364/AO.38.002384.
|
[31] |
CHEN Peng, PAN Delu, MAO Zhihua, et al. Semi-analytic Monte Carlo radiative transfer model of laser propagation in inhomogeneous sea water within subsurface plankton layer[J]. Optics & Laser Technology, 2019, 111: 1–5. doi: 10.1016/j.optlastec.2018.09.028.
|
[32] |
CHEN Peng, JAMET C, MAO Zhihua, et al. OLE: A novel oceanic lidar emulator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(11): 9730–9744. doi: 10.1109/TGRS.2020.3035381.
|
[33] |
SON Y B, GARDNER W D, MISHONOV A V, et al. Multispectral remote-sensing algorithms for particulate organic carbon (POC): The Gulf of Mexico[J]. Remote Sensing of Environment, 2009, 113(1): 50–61. doi: 10.1016/j.rse.2008.08.011.
|
[34] |
TELLINGHUISEN J. Statistical error propagation[J]. The Journal of Physical Chemistry A, 2001, 105(15): 3917–3921. doi: 10.1021/jp003484u.
|