Turn off MathJax
Article Contents
LU Qing, ZOU Zihao, HUANG Penghui, et al. Clutter suppression performance analysis of spaceborne bistatic radar systems based on a semiempirical bistatic clutter scattering coefficient model[J]. Journal of Radars, in press. doi: 10.12000/JR25059
Citation: LU Qing, ZOU Zihao, HUANG Penghui, et al. Clutter suppression performance analysis of spaceborne bistatic radar systems based on a semiempirical bistatic clutter scattering coefficient model[J]. Journal of Radars, in press. doi: 10.12000/JR25059

Clutter Suppression Performance Analysis of Spaceborne Bistatic Radar Systems Based on a Semiempirical Bistatic Clutter Scattering Coefficient Model

DOI: 10.12000/JR25059 CSTR: 32380.14.JR25059
Funds:  The National Natural Science Foundation of China (62271406)
More Information
  • Conventional spaceborne monostatic radar systems incur huge engineering costs to achieve small moving-target detection and low anti-interference ability. By manipulating the transmitter-receiver separation in a spaceborne bistatic radar system, the target radar cross section can be effectively improved by adopting a configuration with a large azimuth bistatic angle, and the anti-interference ability can be improved because the receiver does not transmit signals. However, the characteristics of the background clutter echo in a spaceborne bistatic radar system differ drastically from those in a spaceborne monostatic radar system because of the transmitter-receiver separation in the former. To overcome the limitations of existing empirical clutter scattering coefficient models, which typically do not capture the variation of scattering coefficient with azimuth bistatic angle, this study proposes a semiempirical bistatic clutter scattering coefficient model based on the two-scale model. In the proposed model, an empirical clutter backscattering coefficient model can be converted to a bistatic clutter scattering coefficient model based on electromagnetic scattering theories, and the bistatic scattering coefficient is further modified based on the two-scale model. The proposed model was validated using real measured data of bistatic clutter scattering coefficients obtained from existing literature. Using the proposed model, clutter suppression performance under different azimuth bistatic angles was analyzed by employing space-time adaptive processing in spaceborne bistatic radar systems. Reportedly, under HH polarization, the clutter suppression performance was relatively good when the azimuth bistatic angle was 30°~130°, whereas the clutter suppression performance was considerably affected by large-power main-lobe clutter when the azimuth bistatic angle was >150°.

     

  • loading
  • [1]
    ROSEN P A and DAVIS M E. A joint space-borne radar technology demonstration mission for NASA and the air force[C]. 2020 IEEE Aerospace Conference Proceedings (Cat. No.03TH8652), Big Sky, USA, 2003: 437–444. doi: 10.1109/AERO.2003.1235073.
    [2]
    FIEDLER S and PREISS B. Geosynchronous space based radar concept development for theater surveillance[C]. 1996 IEEE Aerospace Applications Conference. Proceedings, Aspen, USA, 1996: 77–90. doi: 10.1109/AERO.1996.499404.
    [3]
    王增福, 杨广宇, 金术玲. 考虑综合性能最优的非短视快速天基雷达多目标跟踪资源调度算法[J]. 雷达学报, 2024, 13(1): 253–269. doi: 10.12000/JR23162.

    WANG Zengfu, YANG Guangyu, and JIN Shuling. A non-myopic and fast resource scheduling algorithm for multi-target tracking of space-based radar considering optimal integrated performance[J]. Journal of Radars, 2024, 13(1): 253–269. doi: 10.12000/JR23162.
    [4]
    ZOU Zihao, MA Jingtao, HUANG Penghui, et al. Multichannel sea clutter modeling and clutter suppression performance analysis for spaceborne bistatic surveillance radar systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5108424. doi: 10.1109/TGRS.2024.3424562.
    [5]
    WANG Jianbo, YE Jianyu, WU Xiaoliang, et al. RCS statistical modeling of stealth targets based on fractional-order Legendre polynomials[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 9807–9820. doi: 10.1109/TAES.2023.3309613.
    [6]
    ZHU Lei, LIANG Xiaolong, LI Jiong, et al. Simulation analysis on static scattering characteristics of stealth aircraft[C]. 2016 IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, Xi’an, China, 2016: 1774–1778. doi: 10.1109/IMCEC.2016.7867524.
    [7]
    GUTTRICH G L, SIEVERS W E, and TOMLJANOVICH N M. Wide area surveillance concepts based on geosynchronous illumination and bistatic unmanned airborne vehicles or satellite reception[C]. 1997 IEEE National Radar Conference, Syracuse, USA, 1997: 126–131. doi: 10.1109/NRC.1997.588225.
    [8]
    BARTON D K. Land clutter models for radar design and analysis[J]. Proceedings of the IEEE, 1985, 73(2): 198–204. doi: 10.1109/PROC.1985.13133.
    [9]
    MORCHIN W C. Airborne Early Warning Radar[M]. Norwood, USA: Artech House, 1990: 147–153.
    [10]
    HORST M M, DYER F B, and TULEY M T. Radar sea clutter model[C]. International IEEE AP/S URSI Symposium, Washington, USA, 1978: 6–10.
    [11]
    ANTIPOV I. Simulation of sea clutter returns[R]. DSTO-TR-0679, 1998.
    [12]
    REILLY J P and DOCKERY G D. Influence of evaporation ducts on radar sea return[J]. IEE Proceedings F—Radar and Signal Processing, 1990, 137(2): 80–88. doi: 10.1049/ip-f-2.1990.0012.
    [13]
    GREGERS-HANSEN V and MITAL R. An improved empirical model for radar sea clutter reflectivity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3512–3524. doi: 10.1109/TAES.2012.6324732.
    [14]
    WILLIS N J. Bistatic Radar[M]. 2nd ed. Raleigh, USA: SciTech, 2005: 157–171.
    [15]
    AL-ASHWAL W A, GRIFFITHS H D, and WOODBRIDGE K. An empirical model for bistatic sea clutter normalised radar cross section[C]. IET International Conference on Radar Systems, Glasgow, UK, 2012: 1–5. doi: 10.1049/cp.2012.1672.
    [16]
    GRIFFITHS H D, AL-ASHWAL W A, WARD K D, et al. Measurement and modelling of bistatic radar sea clutter[J]. IET Radar, Sonar & Navigation, 2010, 4(2): 280–292. doi: 10.1049/iet-rsn.2009.0124.
    [17]
    谢文冲, 段克清, 王永良. 机载雷达空时自适应处理技术研究综述[J]. 雷达学报, 2017, 6(6): 575–586. doi: 10.12000/JR17073.

    XIE Wenchong, DUAN Keqing, and WANG Yongliang. Space time adaptive processing technique for airborne radar: An overview of its development and prospects[J]. Journal of Radars, 2017, 6(6): 575–586. doi: 10.12000/JR17073.
    [18]
    JOHNSON J T, BAKER C J, SMITH G E, et al. The monostatic-bistatic equivalence theorem and bistatic radar clutter[C]. 2014 11th European Radar Conference, Rome, Italy, 2014: 105–108. doi: 10.1109/EuRAD.2014.6991218.
    [19]
    JOHNSON J T and OUELLETTE J D. Polarization features in bistatic scattering from rough surfaces[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(3): 1616–1626. doi: 10.1109/TGRS.2013.2252909.
    [20]
    SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York, USA: McGraw-Hill, 2008: 15.30–15.32.
    [21]
    PIERSON W J and MOSKOWITZ L. A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodskii[J]. Journal of Geophysical Research, 1964, 69(24): 5181–5190. doi: 10.1029/JZ069i024p05181.
    [22]
    CHASE J, COTE L J, MARKS W, et al. The directional spectrum of a wind generated sea as determined from data obtained by the Stereo Wave Observation Project[R]. 1957.
    [23]
    LARSON R W, MAFFETT A L, HEIMILLER R C, et al. Bistatic clutter measurements[J]. IEEE Transactions on Antennas and Propagation, 1978, 26(6): 801–804. doi: 10.1109/TAP.1978.1141947.
    [24]
    ULABY F T, VAN DEVENTER T E, EAST J R, et al. Millimeter-wave bistatic scattering from ground and vegetation targets[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(3): 229–243. doi: 10.1109/36.3026.
    [25]
    COST S T. Measurements of the bistatic echo area of terrain at X-band[R]. 1965.
    [26]
    DOMVILLE A R. The bistatic reflection from land and sea of X-band radio waves[R]. 1967.
    [27]
    EWELL G W. Bistatic Radar Cross Section Measurements[M]. CURRIE N C. Techniques of Radar Reflectivity Measurement. Dedham, USA: Artech House, 1984: Chapter 7.
    [28]
    HALE T B, TEMPLE M A, RAQUET J F, et al. Localized three-dimensional adaptive spatial-temporal processing for airborne radar[C]. RADAR 2002, Edinburgh, UK, 2002: 191–195. doi: 10.1109/RADAR.2002.1174680.
    [29]
    段克清, 李雨凡, 杨兴家, 等. 天基预警雷达低自由度STAP方法研究[J]. 雷达学报, 2022, 11(5): 871–883. doi: 10.12000/JR22075.

    DUAN Keqing, LI Yufan, YANG Xingjia, et al. Reduced degrees of freedom in space-time adaptive processing for space-based early warning radar[J]. Journal of Radars, 2022, 11(5): 871–883. doi: 10.12000/JR22075.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(187) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint