Citation: | ZHANG Xi, YU Junming, LIU Jie, et al. Space-varying motion error compensation for UAV-mounted through-the-wall SAR based on SSA algorithm[J]. Journal of Radars, in press. doi: 10.12000/JR25048 |
[1] |
CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data[M]. Boston: Artech House Publishers, 2005: 108–110.
|
[2] |
金秋, 王雨晗, 杨果, 等. 高速平台SAR脉内多普勒效应误差分析和校正[J]. 雷达科学与技术, 2023, 21(3): 237–246. doi: 10.3969/j.issn.1672-2337.2023.03.001.
JIN Qiu, WANG Yuhan, YANG Guo, et al. Error analysis and correction of Doppler effect for SAR on high-speed platform[J]. Radar Science and Technology, 2023, 21(3): 237–246. doi: 10.3969/j.issn.1672-2337.2023.03.001.
|
[3] |
张健丰. 微小型无人机载FMCW SAR成像技术研究与系统实现[D]. 长沙: 国防科技大学, 2021. doi: 10.27052/d.cnki.gzjgu.2021.000036.
ZHANG Jianfeng. Imaging technology research and system implementation for microminiature UAV FMCW SAR[D]. Changsha: National University of Defense Technology, 2021. doi: 10.27052/d.cnki.gzjgu.2021.000036.
|
[4] |
李嘉诚, 马彦恒, 董健, 等. 小型无人机载战场侦察雷达关键技术研究[J]. 飞航导弹, 2015(8): 37–41. doi: 10.16338/j.issn.1009-1319.2015.08.07.
LI Jiacheng, MA Yanheng, DONG Jian, et al. Research on key technology of battlefield reconnaissance radar carried by small UAV[J]. Aerospace Technology, 2015(8): 37–41. doi: 10.16338/j.issn.1009-1319.2015.08.07.
|
[5] |
褚丽娜, 郭利, 马彦恒, 等. 小型旋翼无人机载圆周SAR成像研究综述[J]. 兵器装备工程学报, 2015, 46(2): 303–316.
CHU Lina, GUO Li, MA Yanheng, et al. Review of circular SAR imaging by a small rotor unmanned aerial vehicle[J]. Journal of Ordnance Equipment Engineering, 2015, 46(2): 303–316.
|
[6] |
李悦丽, 李泽森, 王建, 等. 多旋翼无人机载SAR的视线运动误差修正与补偿[J]. 雷达学报, 2022, 11(6): 1061–1080. doi: 10.12000/JR22082.
LI Yueli, LI Zesen, WANG Jian, et al. Modification and compensation of the line-of-sight motion error for multirotor UAV SAR[J]. Journal of Radars, 2022, 11(6): 1061–1080. doi: 10.12000/JR22082.
|
[7] |
WANG Zhanze, LIU Feifeng, ZENG Tao, et al. A novel motion compensation algorithm based on motion sensitivity analysis for Mini-UAV-based BiSAR system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205813. doi: 10.1109/TGRS.2021.3071460.
|
[8] |
JOYO M K, HAZRY D, FAIZ AHMED S, et al. Altitude and horizontal motion control of quadrotor UAV in the presence of air turbulence[C]. 2013 IEEE Conference on Systems, Process & Control, Kuala Lumpur, Malaysia, 2013: 16–20. doi: 10.1109/SPC.2013.6735095.
|
[9] |
CHENG Yao, QIU Xiaolan, and MENG Dadi. Precise motion compensation of multi-rotor UAV-borne SAR based on improved PTA[J]. Remote Sensing, 2024, 16(14): 2678. doi: 10.3390/rs16142678.
|
[10] |
CHEN Jianlai, XING Mengdao, YU Hanwen, et al. Motion compensation/autofocus in airborne synthetic aperture radar: A review[J]. IEEE Geoscience and Remote Sensing Magazine, 2022, 10(1): 185–206. doi: 10.1109/MGRS.2021.3113982.
|
[11] |
RAN Lei, LIU Zheng, ZHANG Lei, et al. An autofocus algorithm for estimating residual trajectory deviations in synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3408–3425. doi: 10.1109/TGRS.2017.2670785.
|
[12] |
ZHANG Tao, LIAO Guisheng, LI Yachao, et al. An improved time-domain autofocus method based on 3-D motion errors estimation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5223816. doi: 10.1109/TGRS.2021.3137422.
|
[13] |
CALLOWAY T M and DONOHOE G W. Subaperture autofocus for synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(2): 617–621. doi: 10.1109/7.272285.
|
[14] |
WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752.
|
[15] |
蒋锐, 朱岱寅, 朱兆达. 一种用于条带模式SAR成像的自聚焦算法[J]. 航空学报, 2010, 31(12): 2385–2392.
JIANG Rui, ZHU Daiyin, and ZHU Zhaoda. A novel approach to strip-map SAR autofocus[J]. Acta Aeronauticaet Astronautica Sinica, 2010, 31(12): 2385–2392.
|
[16] |
ASH J N. An autofocus method for backprojection imagery in synthetic aperture radar[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 104–108. doi: 10.1109/LGRS.2011.2161456.
|
[17] |
LI Xi, LIU Guosui, and NI Jinlin. Autofocusing of ISAR images based on entropy minimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(4): 1240–1252. doi: 10.1109/7.805442.
|
[18] |
ZHANG Lei, WANG Guanyong, QIAO Zhijun, et al. Azimuth motion compensation with improved subaperture algorithm for airborne SAR imaging[J] IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(1): 184–193. doi: 10.1109/JSTARS.2016.2577588.
|
[19] |
张法桐, 付耀文, 杨威, 等. 微小型无人机载FMCW SAR宽波束运动补偿算法[J]. 系统工程与电子技术, 2024, 46(10): 3303–3311. doi: 10.12305/j.issn.1001-506X.2024.10.08.
ZHANG Fatong, FU Yaowen, YANG Wei, et al. Wide-beam motion compensation algorithm for micro-UAV FMCW SAR[J]. Systems Engineering and Electronics, 2024, 46(10): 3303–3311. doi: 10.12305/j.issn.1001-506X.2024.10.08.
|
[20] |
胡克彬, 张晓玲, 师君, 等. 基于图像强度最优的SAR高精度运动补偿方法[J]. 雷达学报, 2015, 4(1): 60–69. doi: 10.12000/JR15007.
HU Kebin, ZHANG Xiaoling, SHI Jun, et al. A high-precision motion compensation method for SAR based on image intensity optimization[J]. Journal of Radars, 2015, 4(1): 60–69. doi: 10.12000/JR15007.
|