Citation: | ZHUANG Zibo, CHEN Jun, HE Peilin, et al. Research on LiDAR clear air turbulence recognition based on improved SE-ResNet50[J]. Journal of Radars, 2025, 14(3): 629–640. doi: 10.12000/JR25042 |
[1] |
WANG Fazhi, DU Wenhe, YUAN Qi, et al. A survey of structure of atmospheric turbulence in atmosphere and related turbulent effects[J]. Atmosphere, 2021, 12(12): 1608. doi: 10.3390/atmos12121608.
|
[2] |
吴晓庆, 胡晓丹, 杨期科, 等. 低平流层长距离水平路径小尺度湍流首次测量及非Kolmogorov湍流特征参数研究[J/OL]. 中国科学: 物理 力学 天文学. http://kns.cnki.net/kcms/detail/11.5848.N.20250326.1058.006.html, 2025.
WU Xiaoqing, HU Xiaodan, YANG Qike, et al. First measurement of small-scale turbulence over long horizontal paths in the lower stratosphere and study of non-Kolmogorov turbulence characteristic parameters[J/OL]. Science China Physics, Mechanics & Astronogy. http://kns.cnki.net/kcms/detail/11.5848.N.20250326.1058.006.html, 2025.
|
[3] |
PROSSER M C, WILLIAMS P D, MARLTON G J, et al. Evidence for large increases in clear-air turbulence over the past four decades[J]. Geophysical Research Letters, 2023, 50(11): e2023GL103814. doi: 10.1029/2023GL103814.
|
[4] |
STORER L N, WILLIAMS P D, and JOSHI M M. Global response of clear-air turbulence to climate change[J]. Geophysical Research Letters, 2017, 44(19): 9976–9984. doi: 10.1002/2017gl074618.
|
[5] |
SMITH I H, WILLIAMS P D, and SCHIEMANN R. Clear-air turbulence trends over the North Atlantic in high-resolution climate models[J]. Climate Dynamics, 2023, 61(7/8): 3063–3079. doi: 10.1007/s00382-023-06694-x.
|
[6] |
廉文超, 宋小全, 郝朝阳, 等. 双向长短期记忆网络在激光雷达风廓线预测的应用[J]. 光学学报, 2024, 44(24): 2401004. doi: 10.3788/AOS240891.
LIAN Wenchao, SONG Xiaoquan, HAO Zhaoyang, et al. Application of bidirectional long short-term memory network in Doppler Lidar wind profile prediction[J]. Acta Optica Sinica, 2024, 44(24): 2401004. doi: 10.3788/AOS240891.
|
[7] |
GUO Feng, MANN J, PEÑA A, et al. The space-time structure of turbulence for lidar-assisted wind turbine control[J]. Renewable Energy, 2022, 195: 293–310. doi: 10.1016/j.renene.2022.05.133.
|
[8] |
CHAN P W. LIDAR-based turbulence intensity calculation using glide-path scans of the Doppler LIght Detection And Ranging (LIDAR) systems at the Hong Kong International Airport and comparison with flight data and a turbulence alerting system[J]. Meteorologische Zeitschrift, 2010, 19(6): 549–563. doi: 10.1127/0941-2948/2010/0471.
|
[9] |
蒋立辉, 陈红, 庄子波, 等. 小波不变矩的低空风切变识别[J]. 红外与激光工程, 2014, 43(11): 3783–3787. doi: 10.3969/j.issn.1007-2276.2014.11.048.
JIANG Lihui, CHEN Hong, ZHUANG Zibo, et al. Recognition on low-level wind shear of wavelet invariant moments[J]. Infrared and Laser Engineering, 2014, 43(11): 3783–3787. doi: 10.3969/j.issn.1007-2276.2014.11.048.
|
[10] |
SMALIKHO I N and BANAKH V A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer[J]. Atmospheric Measurement Techniques, 2017, 10(11): 4191–4208. doi: 10.5194/amt-10-4191-2017.
|
[11] |
BANAKH V A, SMALIKHO I N, and ZALOZNAYA I V. Possibility of clear air turbulence localization with lidar[J]. Atmospheric and Oceanic Optics, 2023, 36(2): 132–136. doi: 10.1134/S102485602303003X.
|
[12] |
BALATTI D, HADDAD KHODAPARAST H, FRISWELL M I, et al. Aircraft turbulence and gust identification using simulated in-flight data[J]. Aerospace Science and Technology, 2021, 115: 106805. doi: 10.1016/j.ast.2021.106805.
|
[13] |
杨宏宇, 王峰岩. 基于深度卷积神经网络的气象雷达噪声图像语义分割方法[J]. 电子与信息学报, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098.
YANG Hongyu and WANG Fengyan. Meteorological radar noise image semantic segmentation method based on deep convolutional neural network[J]. Journal of Electronics & Information Technology, 2019, 41(10): 2373–2381. doi: 10.11999/JEIT190098.
|
[14] |
叶舒然, 张珍, 王一伟, 等. 基于卷积神经网络的深度学习流场特征识别及应用进展[J]. 航空学报, 2021, 42(4): 524736. doi: 10.7527/S1000-6893.2020.24736.
YE Shuran, ZHANG Zhen, WANG Yiwei, et al. Progress in deep convolutional neural network based flow field recognition and its applications[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(4): 524736. doi: 10.7527/S1000-6893.2020.24736.
|
[15] |
王泽洋, 朱月, 安岩. 基于深度卷积生成对抗网络的大气湍流相位屏生成方法[J]. 激光与光电子学进展, 2024, 61(21): 2101001. doi: 10.3788/LOP232738.
WANG Zeyang, ZHU Yue, and AN Yan. Method for generating atmospheric turbulence phase screen based on deep convolutional generative-adversarial networks[J]. Laser & Optoelectronics Progress, 2024, 61(21): 2101001. doi: 10.3788/LOP232738.
|
[16] |
侯宇超, 王洁, 李洪涛, 等. 基于多尺度胶囊Swin Transformer的SAR图像目标识别方法[J]. 通信学报, 2025, 46(3): 274–290. doi: 10.11959/j.issn.1000-436x.2025045.
HOU Yuchao, WANG Jie, LI Hongtao, et al. Multi-scale capsule Swin Transformer-based method for SAR image target recognition[J]. Journal on Communications, 2025, 46(3): 274–290. doi: 10.11959/j.issn.1000-436x.2025045.
|
[17] |
SHARMA A K, NANDAL A, DHAKA A, et al. HOG transformation based feature extraction framework in modified Resnet50 model for brain tumor detection[J]. Biomedical Signal Processing and Control, 2023, 84: 104737. doi: 10.1016/j.bspc.2023.104737.
|
[18] |
ZHU Qiming, ZHUANG Hongwei, ZHAO Mi, et al. A study on expression recognition based on improved mobilenetV2 network[J]. Scientific Reports, 2024, 14(1): 8121. doi: 10.1038/s41598-024-58736-x.
|
[19] |
郭立民, 黄文青, 陈前, 等. 轻量化的ML-SNet雷达复合干扰识别算法[J]. 系统工程与电子技术, 2025, 47(2): 418–427. doi: 10.12305/j.issn.1001-506X.2025.02.09.
GUO Limin, HUANG Wenqing, CHEN Qian, et al. Lightweight algorithm of ML-SNet radar compound jamming recognition[J]. Systems Engineering and Electronics, 2025, 47(2): 418–427. doi: 10.12305/j.issn.1001-506X.2025.02.09.
|
[20] |
KARADDI S H and SHARMA L D. Classification of lung disorders in chest multi-modal images using hyper-Parameter tuning and modified ResNet50[J]. Multimedia Tools and Applications, 2024: 1–25. doi: 10.1007/s11042-024-20097-y.
|
[21] |
张洪玮, 吴松华, 尹嘉萍, 等. 基于短距相干测风激光雷达的机场低空风切变观测[J]. 红外与毫米波学报, 2018, 37(4): 468–476. doi: 10.11972/j.issn.1001-9014.2018.04.015.
ZHANG Hongwei, WU Songhua, YIN Jiaping, et al. Airport low-level wind shear observation based on short-range CDL[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 468–476. doi: 10.11972/j.issn.1001-9014.2018.04.015.
|
[22] |
李策, 赵培娥, 彭涛, 等. 3维激光测风雷达技术研究[J]. 激光技术, 2017, 41(5): 703–707. doi: 10.7510/jgjs.issn.1001-3806.2017.05.017.
LI Ce, ZHAO Peie, PENG Tao, et al. Technical research of 3-D wind lidar[J]. Laser Technology, 2017, 41(5): 703–707. doi: 10.7510/jgjs.issn.1001-3806.2017.05.017.
|
[23] |
庄子波, 陈星, 台宏达, 等. 基于奇异值分解的激光雷达湍流预警算法[J]. 光学精密工程, 2019, 27(3): 671–679. doi: 10.3788/OPE.20192703.0671.
ZHUANG Zibo, CHEN Xing, TAI Hongda, et al. Turbulence alerting algorithm based on singular value decomposition of Lidar[J]. Optics and Precision Engineering, 2019, 27(3): 671–679. doi: 10.3788/OPE.20192703.0671.
|
[24] |
CHAN P W and LEE Y F. Performance of LIDAR- and radar-based turbulence intensity measurement in comparison with anemometer-based turbulence intensity estimation based on aircraft data for a typical case of terrain-induced turbulence in association with a typhoon[J]. Journal of Zhejiang University SCIENCE A, 2013, 14(7): 469–481. doi: 10.1631/jzus.A1200236.
|
[25] |
陈小龙, 何肖阳, 邓振华, 等. 雷达微弱目标智能化处理技术与应用[J]. 雷达学报(中英文), 2024, 13(3): 501–524. doi: 10.12000/JR23160.
CHEN Xiaolong, HE Xiaoyang, DENG Zhenhua, et al. Radar intelligent processing technology and application for weak target[J]. Journal of Radars, 2024, 13(3): 501–524. doi: 10.12000/JR23160.
|
[26] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[27] |
QIAO Weiliang, GUO Hongtongyang, HUANG Enze, et al. Two-phase flow pattern identification by embedding double attention mechanisms into a convolutional neural network[J]. Journal of Marine Science and Engineering, 2023, 11(4): 793. doi: 10.3390/jmse11040793.
|
[28] |
HU Jie, SHEN Li, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011–2023. doi: 10.1109/TPAMI.2019.2913372.
|
[29] |
WANG Hua, YING Jichong, LIU Jianlei, et al. Harnessing ResNet50 and SENet for enhanced ankle fracture identification[J]. BMC Musculoskeletal Disorders, 2024, 25(1): 250. doi: 10.1186/s12891-024-07355-8.
|
[30] |
YOO J, JIN Y, KO B, et al. k-labelsets method for multi-label ECG signal classification based on SE-ResNet[J]. Applied Sciences, 2021, 11(16): 7758. doi: 10.3390/app11167758.
|