Citation: | GUO Yulin, HU Yihua, FANG Jiajie, et al. Research status and development trend of LiDAR super-resolution imaging technology[J]. Journal of Radars, 2025, 14(3): 501–527. doi: 10.12000/JR25028 |
[1] |
王锋, 张哲, 叶昊, 等. 国外空间态势感知能力分析与发展趋势(特邀)[J]. 激光与光电子学进展, 2024, 61(20): 2011006. doi: 10.3788/LOP240882.
WANG Feng, ZHANG Zhe, YE Hao, et al. Development status and trends of foreign space situation awareness ability (invited)[J]. Laser & Optoelectronics Progress, 2024, 61(20): 2011006. doi: 10.3788/LOP240882.
|
[2] |
马宝林, 朱旭宇. 国外太空态势感知系统发展综述[J]. 战术导弹技术, 2025(1): 60–66, 74. doi: 10.16358/j.issn.1009-1300.20240030.
MA Baolin and ZHU Xuyu. Development overview of foreign space situation awareness system[J]. Tactical Missile Technology, 2025(1): 60–66, 74. doi: 10.16358/j.issn.1009-1300.20240030.
|
[3] |
郑珍珍, 朱振才, 康一舟. 天基空间碎片可见光观测系统与关键技术发展概述[J]. 光学学报, 2022, 42(17): 1712002. doi: 10.3788/AOS202242.1712002.
ZHENG Zhenzhen, ZHU Zhencai, and KANG Yizhou. Overview of space-based optical observation systems for space debris and development of key technologies[J]. Acta Optica Sinica, 2022, 42(17): 1712002. doi: 10.3788/AOS202242.1712002.
|
[4] |
周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学, 2017, 10(1): 25–38. doi: 10.3788/CO.20171001.0025.
ZHOU Chenghao, WANG Zhile, and ZHU Feng. Review on optical synthetic aperture imaging technique[J]. Chinese Optics, 2017, 10(1): 25–38. doi: 10.3788/CO.20171001.0025.
|
[5] |
胡以华, 张鑫源, 徐世龙, 等. 激光反射层析成像技术的研究进展[J]. 中国激光, 2021, 48(4): 0401002. doi: 10.3788/CJL202148.0401002.
HU Yihua, ZHANG Xinyuan, XU Shilong, et al. Research progress of laser reflective tomography techniques[J]. Chinese Journal of Lasers, 2021, 48(4): 0401002. doi: 10.3788/CJL202148.0401002.
|
[6] |
KARR T J. Synthetic aperture Ladar for high-resolution ground-based imaging of objects in LEO, GEO, and Cis-Lunar space[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 5499–5514. doi: 10.1109/TAES.2024.3396417.
|
[7] |
胡以华. 激光成像目标侦察[M]. 北京: 国防工业出版社, 2013.
HU Yihua. Laser Imaging Target Reconnaissance[M]. Beijing: National Defense Industry Press, 2013.
|
[8] |
黎正平. 远距离单光子三维成像的技术研究[D]. [博士论文], 中国科学技术大学, 2020. doi: 10.27517/d.cnki.gzkju.2020.000418.
LI Zhengping. Long range single-photon three-dimensional imaging[D]. [Ph.D. dissertation], University of Science and Technology of China, 2020. doi: 10.27517/d.cnki.gzkju.2020.000418.
|
[9] |
康岩, 薛瑞凯, 李力飞, 等. 基于像素复用的SPAD阵列连续扫描三维成像[J]. 红外与激光工程, 2020, 49(S2): 20200375. doi: 10.3788/IRLA20200375.
KANG Yan, XUE Ruikai, LI Lifei, et al. Continuous scanning 3D imaging with SPAD array based on pixel multiplexing[J]. Infrared and Laser Engineering, 2020, 49(S2): 20200375. doi: 10.3788/IRLA20200375.
|
[10] |
胡以华, 赵禄达. 激光成像处理技术研究现状及展望(特邀)[J]. 红外与激光工程, 2023, 52(6): 20230169. doi: 10.3788/IRLA20230169.
HU Yihua and ZHAO Luda. Recent progress and prospect of laser imaging processing technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(6): 20230169. doi: 10.3788/IRLA20230169.
|
[11] |
张汉熠, 赵新宇, 张益成, 等. 单光子激光雷达研究进展[J]. 中国激光, 2022, 49(19): 1910003. doi: 10.3788/CJL202249.1910003.
ZHANG Hanyi, ZHAO Xinyu, ZHANG Yicheng, et al. Review of advances in single-photon LiDAR[J]. Chinese Journal of Lasers, 2022, 49(19): 1910003. doi: 10.3788/CJL202249.1910003.
|
[12] |
赵浴阳, 周鹏飞, 解天鹏, 等. 单光子激光雷达技术发展现状与趋势[J]. 光电工程, 2024, 51(3): 240037. doi: 10.12086/oee.2024.240037.
ZHAO Yuyang, ZHOU Pengfei, XIE Tianpeng, et al. Development status and trends of single-photon LiDAR technology[J]. Opto-Electronic Engineering, 2024, 51(3): 240037. doi: 10.12086/oee.2024.240037.
|
[13] |
何光辉, 王虹, 方强, 等. 山地坡度自适应星载光子计数激光雷达点云去噪方法[J]. 红外与毫米波学报, 2023, 42(2): 250–259. doi: 10.11972/j.issn.1001-9014.2023.02.016.
HE Guanghui, WANG Hong, FANG Qiang, et al. Spaceborne photon counting LiDAR point cloud denoising method with the adaptive mountain slope[J]. Journal of Infrared and Millimeter Waves, 2023, 42(2): 250–259. doi: 10.11972/j.issn.1001-9014.2023.02.016.
|
[14] |
ZHANG Huang, WANG Changshuo, YU Long, et al. PointGT: A method for point-cloud classification and segmentation based on local geometric transformation[J]. IEEE Transactions on Multimedia, 2024, 26: 8052–8062. doi: 10.1109/TMM.2024.3374580.
|
[15] |
赵禄达, 胡以华, 赵楠翔, 等. LiDAR点云深度学习模型的压缩和部署加速方法研究现状与展望(特邀)[J]. 激光与光电子学进展, 2024, 61(20): 2011005. doi: 10.3788/LOP241166.
ZHAO Luda, HU Yihua, ZHAO Nanxiang, et al. Review of model compression and accelerated development for deep learning in LiDAR point cloud processing (invited)[J]. Laser & Optoelectronics Progress, 2024, 61(20): 2011005. doi: 10.3788/LOP241166.
|
[16] |
VUTHEA V and TOSHIYOSHI H. A design of Risley scanner for LiDAR applications[C]. 2018 International Conference on Optical MEMS and Nanophotonics (OMN), Lausanne, Switzerland, 2018: 1–2. doi: 10.1109/OMN.2018.8454641.
|
[17] |
RAJ T, HASHIM F H, HUDDIN A B, et al. A survey on LiDAR scanning mechanisms[J]. Electronics, 2020, 9(5): 741. doi: 10.3390/electronics9050741.
|
[18] |
ZHOU Jingkun and QIAN Keyuan. Low-voltage wide-field-of-view lidar scanning system based on a MEMS mirror[J]. Applied Optics, 2019, 58(5): A283. doi: 10.1364/AO.58.00A283.
|
[19] |
陈敬业, 时尧成. 固态激光雷达研究进展[J]. 光电工程, 2019, 46(7): 190218. doi: 10.12086/oee.2019.190218.
CHEN Jingye and SHI Yaocheng. Research progress in solid-state LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190218. doi: 10.12086/oee.2019.190218.
|
[20] |
赵中民, 习友宝. 三维激光扫描系统的固有误差校正算法[J]. 激光与红外, 2016, 46(1): 34–38. doi: 10.3969/j.issn.1001-5078.2016.01.006.
ZHAO Zhongmin and XI Youbao. Inherent error correction algorithm for 3D laser scanning system[J]. Laser & Infrared, 2016, 46(1): 34–38. doi: 10.3969/j.issn.1001-5078.2016.01.006.
|
[21] |
丁宇韬, 张军, 郭遥, 等. 振镜扫描枕形畸变分析及校正算法[J]. 激光与光电子学进展, 2024, 61(13): 1308001. doi: 10.3788/LOP231782.
DING Yutao, ZHANG Jun, GUO Yao, et al. Analysis and correction algorithm of pincushion distortion in galvanometer scanning[J]. Laser & Optoelectronics Progress, 2024, 61(13): 1308001. doi: 10.3788/LOP231782.
|
[22] |
WANG Dingkang, WATKINS C, and XIE Huikai. MEMS mirrors for LiDAR: A review[J]. Micromachines, 2020, 11(5): 456. doi: 10.3390/mi11050456.
|
[23] |
KASTURI A, MILANOVIC V, LOVELL D, et al. Comparison of MEMS mirror LiDAR architectures[C]. MOEMS and Miniaturized Systems XIX, San Francisco, United States, 2020: 112930B. doi: 10.1117/12.2556248.
|
[24] |
LI Zhengping, HUANG Xin, CAO Yuan, et al. Single-photon computational 3D imaging at 45 km[J]. Photonics Research, 2020, 8(9): 1532–1540. doi: 10.1364/PRJ.390091.
|
[25] |
LI Zhengping, YE Juntian, HUANG Xin, et al. Single-photon imaging over 200 km[J]. Optica, 2021, 8(3): 344. doi: 10.1364/OPTICA.408657.
|
[26] |
刘英见, 刘航宇, 蒋凯, 等. 全天候工作单光子计数激光雷达[J]. 光通信研究, 2024(4): 23005001. doi: 10.13756/j.gtxyj.2024.230050.
LIU Yingjian, LIU Hangyu, JIANG Kai, et al. All-weather single-photon LiDAR[J]. Study on Optical Communications, 2024(4): 23005001. doi: 10.13756/j.gtxyj.2024.230050.
|
[27] |
黄远建, 李晓银, 叶文怡, 等. 基于共聚焦亚像素扫描的高分辨三维成像[J]. 光学学报, 2023, 43(8): 822014. doi: 10.3788/AOS221974.
HUANG Yuanjian, LI Xiaoyin, YE Wenyi, et al. High resolution 3D imaging based on confocal sub-pixel scanning[J]. Acta Optica Sinica, 2023, 43(8): 0822014. doi: 10.3788/AOS221974.
|
[28] |
AULL B F, DUERR E K, FRECHETTE J P, et al. Large-format Geiger-Mode avalanche photodiode arrays and readout circuits[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(2): 3800510. doi: 10.1109/JSTQE.2017.2736440.
|
[29] |
BIAN Liheng, SONG Haoze, PENG Lintao, et al. High-resolution single-photon imaging with physics-informed deep learning[J]. Nature Communications, 2023, 14(1): 5902. doi: 10.1038/s41467-023-41597-9.
|
[30] |
CHANG J, LOS J W N, TENORIO-PEARL J O, et al. Detecting telecom single photons with ( ${99.5_{-2.07}^{+0.5}}$) \% system detection efficiency and high time resolution[J]. APL Photonics, 2021, 6(3): 36114. doi: 10.1063/5.0039772.
|
[31] |
CHILES J, CHARAEV I, LASENBY R, et al. New constraints on dark photon dark matter with superconducting nanowire detectors in an optical haloscope[J]. Physical Review Letters, 2022, 128(23): 231802. doi: 10.1103/PhysRevLett.128.231802.
|
[32] |
KORZH B, ZHAO Qingyuan, ALLMARAS J P, et al. Demonstration of sub-3 ps temporal resolution with a superconducting nanowire single-photon detector[J]. Nature Photonics, 2020, 14(4): 250–255. doi: 10.1038/s41566-020-0589-x.
|
[33] |
MCCARTHY A, TAYLOR G G, GARCIA-ARMENTA J, et al. High-resolution long-distance depth imaging LiDAR with ultra-low timing jitter superconducting nanowire single-photon detectors[J]. Optica, 2025, 12(2): 168. doi: 10.1364/OPTICA.544877.
|
[34] |
MA Ruoyan, GUO Zhimin, CHEN Dai, et al. Drone-based superconducting nanowire single-photon detection system with a detection efficiency of more than 90%[J]. Advanced Photonics Nexus, 2025, 4(2): 026003. doi: 10.1117/1.APN.4.2.026003.
|
[35] |
KIRMANI A, VENKATRAMAN D, SHIN D, et al. First-photon imaging[J]. Science, 2014, 343(6166): 58–61. doi: 10.1126/science.1246775.
|
[36] |
SHIN D, KIRMANI A, GOYAL V K, et al. Photon-efficient computational 3-D and reflectivity imaging with single-photon detectors[J]. IEEE Transactions on Computational Imaging, 2015, 1(2): 112–125. doi: 10.1109/TCI.2015.2453093.
|
[37] |
SHIN D, SHAPIRO J H, and GOYAL V K. Performance analysis of low-flux least-squares single-pixel imaging[J]. IEEE Signal Processing Letters, 2016, 23(12): 1756–1760. doi: 10.1109/LSP.2016.2617329.
|
[38] |
RAPP J and GOYAL V K. A few photons among many: Unmixing signal and noise for photon-efficient active imaging[J]. IEEE Transactions on Computational Imaging, 2017, 3(3): 445–459. doi: 10.1109/TCI.2017.2706028.
|
[39] |
ALTMANN Y, REN Ximing, MCCARTHY A, et al. Lidar waveform-based analysis of depth images constructed using sparse single-photon data[J]. IEEE Transactions on Image Processing, 2016, 25(5): 1935–1946. doi: 10.1109/TIP.2016.2526784.
|
[40] |
LINDELL D B, O’TOOLE M, and WETZSTEIN G. Single-photon 3D imaging with deep sensor fusion[J]. ACM Transactions on Graphics, 2018, 37(4): 113. doi: 10.1145/3197517.3201316.
|
[41] |
PENG Jiayong, XIONG Zhiwei, HUANG Xin, et al. Photon-efficient 3D imaging with a non-local neural network[C]. 16th European Conference on Computer Vision, Glasgow, UK, 2020: 225–241. doi: 10.1007/978-3-030-58539-6_14.
|
[42] |
MARINO R M and DAVIS W R JR. Jigsaw: A foliage-penetrating 3D imaging laser radar system[J]. Lincoln Laboratory Journal, 2005, 15(1): 23–36.
|
[43] |
MCCARTHY A, REN Ximing, FRERA A D, et al. Kilometer-range depth imaging at 1550 nm wavelength using an InGaAs/InP single-photon avalanche diode detector[J]. Optics Express, 2013, 21(19): 22098. doi: 10.1364/OE.21.022098.
|
[44] |
PAWLIKOWSKA A M, HALIMI A, LAMB R A, et al. Single-photon three-dimensional imaging at up to 10 kilometers range[J]. Optics Express, 2017, 25(10): 11919. doi: 10.1364/OE.25.011919.
|
[45] |
HONG Yu, LIU Shijie, LI Zhengping, et al. Airborne single-photon LiDAR towards a small-sized and low-power payload[J]. Optica, 2024, 11(5): 612. doi: 10.1364/OPTICA.518999.
|
[46] |
KANG Yan, LI Lifei, LIU Dawei, et al. Fast long-range photon counting depth imaging with sparse single-photon data[J]. IEEE Photonics Journal, 2018, 10(3): 1–10. doi: 10.1109/JPHOT.2018.2840681.
|
[47] |
郭静菁, 费晓燕, 葛鹏, 等. 基于全光纤光子计数激光雷达的高分辨率三维成像[J]. 红外与激光工程, 2021, 50(7): 20210162. doi: 10.3788/IRLA20210162.
GUO Jingjing, FEI Xiaoyan, GE Peng, et al. High-resolution three-dimensional imaging based on all-fiber photon-counting Lidar system[J]. Infrared and Laser Engineering, 2021, 50(7): 20210162. doi: 10.3788/IRLA20210162.
|
[48] |
邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008.
DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008.
|
[49] |
刘立人. 高分辨率遥感新途径——合成孔径激光成像雷达[J]. 科学, 2014, 66(6): 25–29. doi: 10.3969/j.issn.0368-6396.2014.06.006.
LIU Liren. A new way to high-resolution remote sensing: Synthetic aperture imaging Ladar[J]. Science, 2014, 66(6): 25–29. doi: 10.3969/j.issn.0368-6396.2014.06.006.
|
[50] |
吴谨. 关于合成孔径激光雷达成像研究[J]. 雷达学报, 2012, 1(4): 353–360. doi: 10.3724/SP.J.1300.2012.20076.
WU Jin. On the development of synthetic aperture Ladar imaging[J]. Journal of Radars, 2012, 1(4): 353–360. doi: 10.3724/SP.J.1300.2012.20076.
|
[51] |
徐晨, 晋凯, 魏凯. 合成孔径激光雷达成像技术研究进展[J]. 光电工程, 2024, 51(3): 240007. doi: 10.12086/oee.2024.240007.
XU Chen, JIN Kai, and WEI Kai. Research progress of synthetic aperture Ladar techniques[J]. Opto-Electronic Engineering, 2024, 51(3): 240007. doi: 10.12086/oee.2024.240007.
|
[52] |
LUCKE R L, RICKARD L J, BASHKANSKY M, et al. Synthetic Aperture Ladar (SAL): Fundamental theory, design equations for a satellite system, and laboratory demonstration[R]. NRL/FR/7218--02-10,051, 2002. doi: 10.21236/ADA409859.
|
[53] |
张珂殊, 潘洁, 王然, 等. 大幅宽激光合成孔径雷达成像技术研究[J]. 雷达学报, 2017, 6(1): 1–10. doi: 10.12000/JR16152.
ZHANG Keshu, PAN Jie, WANG Ran, et al. Study of wide swath synthetic aperture Ladar imaging technology[J]. Journal of Radars, 2017, 6(1): 1–10. doi: 10.12000/JR16152.
|
[54] |
GAO Shuang, O’SULLIVAN M, and HUI Rongqing. Complex-optical-field lidar system for range and vector velocity measurement[J]. Optics Express, 2012, 20(23): 25867. doi: 10.1364/OE.20.025867.
|
[55] |
LU Zhaoyu, YANG Tianxin, LI Zhiyong, et al. Broadband linearly chirped light source with narrow linewidth based on external modulation[J]. Optics Letters, 2018, 43(17): 4144. doi: 10.1364/OL.43.004144.
|
[56] |
卢炤宇, 葛春风, 王肇颖, 等. 频率调制连续波激光雷达技术基础与研究进展[J]. 光电工程, 2019, 46(7): 190038. doi: 10.12086/oee.2019.190038.
LU Zhaoyu, GE Chunfeng, WANG Zhaoying, et al. Basics and developments of frequency modulation continuous wave LiDAR[J]. Opto-Electronic Engineering, 2019, 46(7): 190038. doi: 10.12086/oee.2019.190038.
|
[57] |
胡烜, 李道京, 赵绪锋. 基于本振数字延时的合成孔径激光雷达信号相干性保持方法[J]. 中国激光, 2018, 45(5): 0510003. doi: 10.3788/CJL201845.0510003.
HU Xuan, LI Daojing, and ZHAO Xufeng. Maintaining method of signal coherence in synthetic aperture Ladar based on local oscillator digital delay[J]. Chinese Journal of Lasers, 2018, 45(5): 0510003. doi: 10.3788/CJL201845.0510003.
|
[58] |
KE Jiayi, SONG Ziqi, CUI Zhongming, et al. Phase noise compensation experiment with frequency modulated continuous wave laser in atmospheric propagation[J]. Optical Engineering, 2022, 61(7): 073101. doi: 10.1117/1.OE.61.7.073101.
|
[59] |
张洁, 王然, 张珂殊. 相位梯度自聚焦算法在合成孔径激光雷达中的应用与改进[J]. 激光与光电子学进展, 2016, 53(6): 062801. doi: 10.3788/LOP53.062801.
ZHANG Jie, WANG Ran, and ZHANG Keshu. Application and improvement of phase gradient autofocus algorithm in synthetic aperture LiDAR[J]. Laser & Optoelectronics Progress, 2016, 53(6): 062801. doi: 10.3788/LOP53.062801.
|
[60] |
XUE Jiyu, CAO Yunhua, WU Zhensen, et al. Inverse synthetic aperture lidar imaging and compensation in slant atmospheric turbulence with phase gradient algorithm compensation[J]. Optics & Laser Technology, 2022, 154: 108329. doi: 10.1016/j.optlastec.2022.10832.
|
[61] |
GATT P, JACOB D, BRADFORD B, et al. Performance bounds of the phase gradient autofocus algorithm for synthetic aperture Ladar[C]. Laser Radar Technology and Applications XIV, Orlando, USA, 2009: 73230P. doi: 10.1117/12.822216.
|
[62] |
SONG Z, MO D, LI B, et al. Phase gradient matrix autofocus for ISAL space-time-varied phase error correction[J]. IEEE Photonics Technology Letters, 2020, 32(6): 353–356. doi: 10.1109/LPT.2020.2974505.
|
[63] |
阮航, 吴彦鸿, 叶伟, 等. 逆合成孔径激光雷达相位误差补偿算法[J]. 激光与光电子学进展, 2013, 50(10): 102801. doi: 10.3788/LOP50.102801.
RUAN Hang, WU Yanhong, YE Wei, et al. Phase error compensation algorithm for inverse synthetic aperture Ladar[J]. Laser & Optoelectronics Progress, 2013, 50(10): 102801. doi: 10.3788/lop50.102801. doi: 10.3788/LOP50.102801.
|
[64] |
刘立人. 直视合成孔径激光成像雷达原理[J]. 光学学报, 2012, 32(9): 0928002. doi: 10.3788/AOS201232.0928002.
LIU Liren. Principle of down-looking synthetic aperture imaging Ladar[J]. Acta Optica Sinica, 2012, 32(9): 0928002. doi: 10.3788/AOS201232.0928002.
|
[65] |
马萌, 李道京, 杜剑波. 振动条件下机载合成孔径激光雷达成像处理[J]. 雷达学报, 2014, 3(5): 591–602. doi: 10.3724/SP.J.1300.2014.13132.
MA Meng, LI Daojing, and DU Jianbo. Imaging of airborne synthetic aperture Ladar under platform vibration condition[J]. Journal of Radars, 2014, 3(5): 591–602. doi: 10.3724/SP.J.1300.2014.13132.
|
[66] |
杜剑波, 李道京, 马萌, 等. 基于干涉处理的机载合成孔径激光雷达振动估计和成像[J]. 中国激光, 2016, 43(9): 0910031. doi: 10.3788/CJL201643.0910003.
DU Jianbo, LI Daojing, MA Meng, et al. Vibration estimation and imaging of airborne synthetic aperture Ladar based on interferometry processing[J]. Chinese Journal of Lasers, 2016, 43(9): 0910031. doi: 10.3788/CJL201643.0910003.
|
[67] |
ZHOU Kai, LI Daojing, GAO Jinghan, et al. Vibration phases estimation based on orthogonal interferometry of inner view field for ISAL imaging and detection[J]. Applied Optics, 2023, 62(11): 2845. doi: 10.1364/AO.481186.
|
[68] |
唐禹, 秦宝, 晏芸, 等. 多发多收合成孔径激光雷达高分辨率宽测绘带成像[J]. 红外与激光工程, 2016, 45(8): 0830001. doi: 10.3788/IRLA201645.0830001.
TANG Yu, QIN Bao, YAN Yun, et al. High-resolution and wide-swath imaging of multiple-transmitter-multiple-receiver synthetic aperture Ladar[J]. Infrared and Laser Engineering, 2016, 45(8): 0830001. doi: 10.3788/IRLA201645.0830001.
|
[69] |
张波, 周煜, 孙建锋, 等. 多通道宽幅度合成孔径激光成像雷达收发装置优化研究[J]. 光学学报, 2018, 38(5): 0528002. doi: 10.3788/AOS201838.0528002.
ZHANG Bo, ZHOU Yu, SUN Jianfeng, et al. Optimization research on multi-channel wide-swath synthetic aperture imaging Ladar transceiver system[J]. Acta Optica Sinica, 2018, 38(5): 0528002. doi: 10.3788/AOS201838.0528002.
|
[70] |
李道京, 胡烜. 合成孔径激光雷达光学系统和作用距离分析[J]. 雷达学报, 2018, 7(2): 263–274. doi: 10.12000/JR18017.
LI Daojing and HU Xuan. Optical system and detection range analysis of synthetic aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263–274. doi: 10.12000/JR18017.
|
[71] |
李道京, 周凯, 崔岸婧, 等. 多通道逆合成孔径激光雷达成像探测技术和实验研究[J]. 激光与光电子学进展, 2021, 58(18): 1811017. doi: 10.3788/LOP202158.1811017.
LI Daojing, ZHOU Kai, CUI Anjing, et al. Multi-channel inverse synthetic aperture Ladar imaging detection technology and experimental research[J]. Laser & Optoelectronics Progress, 2021, 58(18): 1811017. doi: 10.3788/LOP202158.1811017.
|
[72] |
汪丙南, 赵娟莹, 李威, 等. 阵列激光合成孔径雷达高分辨成像技术研究[J]. 雷达学报, 2022, 11(6): 1110–1118. doi: 10.12000/JR22204.
WANG Bingnan, ZHAO Juanying, LI Wei, et al. Array synthetic aperture Ladar with high spatial resolution technology[J]. Journal of Radars, 2022, 11(6): 1110–1118. doi: 10.12000/JR22204.
|
[73] |
KIM T, NGAI T, TIMALSINA Y, et al. A single-chip optical phased array in a wafer-scale silicon photonics/CMOS 3D-integration platform[J]. IEEE Journal of Solid-State Circuits, 2019, 54(11): 3061–3074. doi: 10.1109/JSSC.2019.2934601.
|
[74] |
CUI Anjing, LI Daojing, WU Jiang, et al. Laser synthetic aperture coherent imaging for micro-rotating objects based on array detectors[J]. IEEE Photonics Journal, 2022, 14(6): 1–9. doi: 10.1109/JPHOT.2022.3225468.
|
[75] |
PELLIZZARI C J, TRAHAN R, ZHOU Hanying, et al. Synthetic aperature Ladar: A model-based approach[J]. IEEE Transactions on Computational Imaging, 2017, 3(4): 901–916. doi: 10.1109/TCI.2017.2663320.
|
[76] |
徐晨, 宋岸鹏, 晋凯, 等. 改进的基于光学成像模型的逆合成孔径激光雷达成像算法[J]. 激光与光电子学进展, 2023, 60(12): 1228001. doi: 10.3788/LOP221548.
XU Chen, SONG Anpeng, JIN Kai, et al. Modified imaging algorithm for inverse synthetic aperture LiDAR based on optical imaging model[J]. Laser & Optoelectronics Progress, 2023, 60(12): 1228001. doi: 10.3788/LOP221548.
|
[77] |
KRAUSE B W, BUCK J, RYAN C, et al. Synthetic aperture Ladar flight demonstration[C]. CLEO: 2011 - Laser Science to Photonic Applications, Baltimore, USA: IEEE, 2011: 1–2.
|
[78] |
卢智勇, 周煜, 孙建峰, 等. 机载直视合成孔径激光成像雷达外场及飞行实验[J]. 中国激光, 2017, 44(1): 0110001. doi: 10.3788/CJL201744.0110001.
LU Zhiyong, ZHOU Yu, SUN Jianfeng, et al. Airborne down-looking synthetic aperture imaging Ladar field experiment and its flight testing[J]. Chinese Journal of Lasers, 2017, 44(1): 0110001. doi: 10.3788/CJL201744.0110001.
|
[79] |
李光远, 卢智勇, 周煜, 等. 直视逆合成孔径激光成像雷达外场实验[J]. 光学学报, 2018, 38(4): 0401001. doi: 10.3788/AOS201838.0401001.
LI Guangyuan, LU Zhiyong, ZHOU Yu, et al. Outdoor experiment of down-looking inverse synthetic aperture imaging Lidar[J]. Acta Optica Sinica, 2018, 38(4): 0401001. doi: 10.3788/AOS201838.0401001.
|
[80] |
张珂殊, 李光祚, 王然, 等. 机载激光合成孔径雷达研究[C]. 第四届高分辨率对地观测学术年会, 武汉, 2017.
ZHANG Keshu, LI Guangzuo, WANG Ran, et al. The study on airborne laser synthetic aperture radar[C]. The 4th China High Resolution Earth Observation Conference, Wuhan, China, 2017.
|
[81] |
MO Di, WANG Ran, WANG Ning, et al. Experiment of inverse synthetic aperture Ladar on real target[C]. 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC), Macau, China, 2017: 319–321. doi: 10.1109/ICEIEC.2017.8076572.
|
[82] |
高敬涵, 李道京, 周凯, 等. 衍射光学系统激光雷达接收波束展宽及作用距离分析[J]. 中国激光, 2023, 50(5): 510001. doi: 10.3788/CJL220658.
GAO Jinghan, LI Daojing, ZHOU Kai, et al. Analysis of receiving beam broadening and detection range of LiDAR based on diffractive optical system[J]. Chinese Journal of Lasers, 2023, 50(5): 510001. doi: 10.3788/CJL220658.
|
[83] |
GAO Jinghan, LI Daojing, ZHOU Kai, et al. Imaging and detection method for low signal-to-noise ratio airborne synthetic aperture Ladar signals[J]. Optical Engineering, 2023, 62(9): 098104. doi: 10.1117/1.OE.62.9.098104.
|
[84] |
吴谨, 默迪, 梁小虎, 等. 合成孔径激光雷达首次实现百公里距离毫米级方位向分辨率成像[J]. 中国激光, 2025, 52(3): 316003. doi: 10.3788/CJL241393.
WU Jin, MO Di, LIANG Xiaohu, et al. Hundred-kilometer distance millimeter-level azimuth resolution imaging of synthetic aperture Ladar is first achieved[J]. Chinese Journal of Lasers, 2025, 52(3): 316003. doi: 10.3788/CJL241393.
|
[85] |
KALENDER W A. Computed Tomography: Fundamentals, System Technology, Image Quality, Applications[M]. Wiley-VCH, 2006.
|
[86] |
HANES S A, BENHAM V N, LASCHE J B, et al. Field demonstration and characterization of a 10.6-μm reflection tomography imaging system[C]. Atmospheric Propagation, Adaptive Systems, and Laser Radar Technology for Remote Sensing, Barcelona, Spain, 2001.
|
[87] |
李道京, 高敬涵, 崔岸婧, 等. 成像探测相干激光雷达技术研究进展[J]. 现代雷达, 2023, 45(11): 1–6. doi: 10.16592/j.cnki.1004-7859.2023.11.001.
LI Daojing, GAO Jinghan, CUI Anjing, et al. Research progress of coherent Ladar technology for imaging and detection[J]. Modern Radar, 2023, 45(11): 1–6. doi: 10.16592/j.cnki.1004-7859.2023.11.001.
|
[88] |
JIN Xiaofeng, SUN Jianfeng, YAN Yi, et al. Application of phase retrieval algorithm in reflective tomography laser radar imaging[J]. Chinese Optics Letters, 2011, 9(1): 012801. doi: 10.3788/COL20110901.12801.
|
[89] |
赵楠翔, 胡以华. 激光反射层析成像相位恢复算法研究[J]. 红外与激光工程, 2019, 48(10): 1005005. doi: 10.3788/IRLA201948.1005005.
ZHAO Nanxiang and HU Yihua. Research of phase retrieval algorithm in laser reflective tomography imaging[J]. Infrared and Laser Engineering, 2019, 48(10): 1005005. doi: 10.3788/IRLA201948.1005005.
|
[90] |
周德力, 黄庚华, 石亮, 等. 非合目标的激光反射层析投影配准方法[J]. 科学技术与工程, 2014, 14(21): 104–107, 112. doi: 10.3969/j.issn.1671-1815.2014.21.018.
ZHOU Deli, HUANG Genghua, SHI Liang, et al. Laser reflective tomography projection registration method of non-cooperative target[J]. Science Technology and Engineering, 2014, 14(21): 104–107, 112. doi: 10.3969/j.issn.1671-1815.2014.21.018.
|
[91] |
杨彪, 胡以华, 林放. 激光反射层析断层成像恢复方法[J]. 光子学报, 2018, 47(4): 0407001. doi: 10.3788/gzxb20184704.0407001.
YANG Biao, HU Yihua, and LIN Fang. Research of phase retrieval method in laser reflective tomography imaging[J]. Acta Photonica Sinica, 2018, 47(4): 0407001. doi: 10.3788/gzxb20184704.0407001.
|
[92] |
WANG Jincheng, ZHOU Shiwei, SHI Liang, et al. Image quality analysis and improvement of Ladar reflective tomography for space object recognition[J]. Optics Communications, 2016, 359: 177–183. doi: 10.1016/j.optcom.2015.09.069.
|
[93] |
谷雨, 胡以华, 郝士琦, 等. 变分贝叶斯解卷积法在激光反射层析成像中的应用[J]. 光学学报, 2016, 36(6): 0611003. doi: 10.3788/AOS201636.0611003.
GU Yu, HU Yihua, HAO Shiqi, et al. Application of variational Bayesian deconvolution method in laser reflective tomography imaging[J]. Acta Optica Sinica, 2016, 36(6): 0611003. doi: 10.3788/AOS201636.0611003.
|
[94] |
林放, 王金诚, 张华, 等. 多帧迭代盲解卷积在激光反射断层成像的应用[J]. 光学学报, 2017, 37(9): 0911001. doi: 10.3788/AOS201737.0911001.
LIN Fang, WANG Jincheng, ZHANG Hua, et al. Application of multi-frame iterative blind deconvolution method in laser reflective tomography imaging[J]. Acta Optica Sinica, 2017, 37(9): 0911001. doi: 10.3788/AOS201737.0911001.
|
[95] |
陆新飞, 夏洁, 尹治平, 等. 基于两维解卷积和稀疏回波去噪的高分辨雷达成像方法[J]. 雷达学报, 2018, 7(3): 285–293. doi: 10.12000/JR17108.
LU Xinfei, XIA Jie, YIN Zhiping, et al. High-resolution radar imaging using 2D deconvolution with sparse echo denoising[J]. Journal of Radars, 2018, 7(3): 285–293. doi: 10.12000/JR17108.
|
[96] |
谷雨, 胡以华, 郝士琦, 等. 激光反射层析成像中滤波反投影算法特性研究[J]. 激光与红外, 2015, 45(12): 1500–1504. doi: 10.3969/j.issn.1001--5078.2015.12.018.
GU Yu, HU Yihua, HAO Shiqi, et al. Study on influence of filter back-projection on laser reflective tomography[J]. Laser & Infrared, 2015, 45(12): 1500–1504. doi: 10.3969/j.issn.1001--5078.2015.12.018.
|
[97] |
张鑫源. 反射层析激光雷达成像关键技术研究[D]. [博士论文], 国防科技大学, 2023.
ZHANG Xinyuan. Key technologies research on reflective tomography Lidar imaging[D]. [Ph.D. dissertation], National University of Defense Technology, 2023.
|
[98] |
MURRAY J, TRISCARI J, FETZER G, et al. Tomographic lidar[C]. Lasers, Sources and Related Photonic Devices, San Diego, USA, 2010: LSWA1. doi: 10.1364/LSC.2010.LSWA1.
|
[99] |
KNIGHT F K, KULKARNI S R, MARINO R M, et al. Tomographic techniques applied to laser radar reflective measurements[J]. The Lincoln Laboratory Journal, 1989, 2: 143–160.
|
[100] |
LI Xianyu, HE Yulin, and HUA Qun. Application of computed tomographic image reconstruction algorithms based on filtered back-projection in diagnosis of bone trauma diseases[J]. Journal of Medical Imaging and Health Informatics, 2020, 10(5): 1219–1224. doi: 10.1166/jmihi.2020.3036.
|
[101] |
杨彪, 胡以华. 代数迭代法在激光反射断层成像目标重构中的应用[J]. 红外与激光工程, 2019, 48(7): 0726002. doi: 10.3788/IRLA201948.0726002.
YANG Biao and HU Yihua. Laser reflection tomography target reconstruction algorithm based on algebraic iteration[J]. Infrared and Laser Engineering, 2019, 48(7): 0726002. doi: 10.3788/IRLA201948.0726002.
|
[102] |
GUO Rui, JIANG Zheyi, JIN Zhihan, et al. Reflective tomography lidar image reconstruction for long distance non-cooperative target[J]. Remote Sensing, 2022, 14(14): 3310. doi: 10.3390/rs14143310.
|
[103] |
HU Dianlin, LIU Jin, LV Tianling, et al. Hybrid-domain neural network processing for sparse-view CT reconstruction[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2021, 5(1): 88–98. doi: 10.1109/TRPMS.2020.3011413.
|
[104] |
GUO Fupei, YANG Bo, FENG Hao, et al. An efficient sinogram domain fully convolutional interpolation network for sparse-view computed tomography reconstruction[J]. Applied Sciences, 2023, 13(20): 11264. doi: 10.3390/app132011264.
|
[105] |
LEE H, LEE J, KIM H, et al. Deep-neural-network-based sinogram synthesis for sparse-view CT image reconstruction[J]. IEEE Transactions on Radiation and Plasma Medical Sciences, 2019, 3(2): 109–119. doi: 10.1109/TRPMS.2018.2867611.
|
[106] |
刘一凡, 胡以华, 徐世龙, 等. 基于波形分解的激光反射层析成像优化方法[J]. 光学学报, 2023, 43(18): 1828002. doi: 10.3788/AOS222044.
LIU Yifan, HU Yihua, XU Shilong, et al. Optimization method for laser reflective tomography imaging based on waveform decomposition[J]. Acta Optica Sinica, 2023, 43(18): 1828002. doi: 10.3788/AOS222044.
|
[107] |
ZHANG Xinyuan, HAN Fei, SHEN Shiyang, et al. Target region extraction and segmentation algorithm for reflective tomography lidar image[J]. IET Image Processing, 2023, 17(4): 1001–1009. doi: 10.1049/ipr2.12691.
|
[108] |
张鑫源, 胡以华, 谌诗洋, 等. 公里级激光反射层析实验和碎片质心估计[J]. 物理学报, 2022, 71(11): 114205. doi: 10.7498/aps.71.20220205.
ZHANG Xinyuan, HU Yihua, SHEN Shiyang, et al. Kilometer-level laser reflective tomography experiment and debris barycenter estimation[J]. Acta Physica Sinica, 2022, 71(11): 114205. doi: 10.7498/aps.71.20220205.
|
[109] |
苗清然, 王海霞, 于洋, 等. 光学相干层析成像在指尖生物特征识别中的应用[J]. 激光与光电子学进展, 2023, 60(8): 0811012. doi: 10.3788/LOP230484.
MIAO Qingran, WANG Haixia, YU Yang, et al. Application of optical coherence tomography in fingertip biometrics[J]. Laser & Optoelectronics Progress, 2023, 60(8): 0811012. doi: 10.3788/LOP230484.
|
[110] |
INDUMATHI R and VASUKI R. Segmentation and feature extraction in lung CT images with deep learning model architecture[J]. SN Computer Science, 2023, 4(5): 552. doi: 10.1007/s42979-023-01892-0.
|
[111] |
PARKER J K, CRAIG E B, KLICK D I, et al. Reflective tomography: Images from range-resolved laser radar measurements[J]. Applied Optics, 1988, 27(13): 2642–2643. doi: 10.1364/AO.27.002642.
|
[112] |
MOSLEY D E, MATSON C L, and CZYZAK S R. Active imaging of space objects using the HI-CLASS (high-performance CO2 Ladar surveillance sensor) laser system[C]. Laser Radar Technology and Applications II, Orlando, USA, 1997: 52–60. doi: 10.1117/12.281036.
|
[113] |
MATSON C L and MOSLEY D E. Reflective tomography reconstruction of satellite features—field results[J]. Applied Optics, 2001, 40(14): 2290–2296. doi: 10.1364/AO.40.002290.
|
[114] |
MATSON C L, HOLLAND D E, PIERROTTET D F, et al. Satellite feature reconstruction using reflective tomography: Field results[C]. Optics in Atmospheric Propagation and Adaptive Systems II, London, UK, 1998: 65–72. doi: 10.1117/12.298050.
|
[115] |
HENRIKSSON M, OLOFSSON T, GRÖNWALL C, et al. Optical reflectance tomography using TCSPC laser radar[C]. Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI, Edinburgh, United Kingdom, 2012: 85420E. doi: 10.1117/12.974493.
|
[116] |
陈剑彪, 孙华燕, 孔舒亚, 等. 激光反射层析成像仿真方法研究[J]. 激光与光电子学进展, 2019, 56(13): 131104. doi: 10.3788/LOP56.131104.
CHEN Jianbiao, SUN Huayan, KONG Shuya, et al. Simulation method of laser reflection tomography imaging[J]. Laser & Optoelectronics Progress, 2019, 56(13): 131104. doi: 10.3788/LOP56.131104.
|
[117] |
张鑫源, 胡以华, 韩飞, 等. 基于目标轮廓自动校正的激光反射层析成像投影配准方法[J]. 红外与毫米波学报, 2023, 42(3): 410–417. doi: 10.11972/j.issn.1001-9014.2023.03.017.
ZHANG Xinyuan, HU Yihua, HAN Fei, et al. Laser reflective tomography imaging projection registration method based on target contour auto-correction[J]. Journal of Infrared and Millimeter Waves, 2023, 42(3): 410–417. doi: 10.11972/j.issn.1001-9014.2023.03.017.
|
[118] |
瞿福琪, 胡以华, 焦均均, 等. 星对星激光雷达反射层析成像技术探讨[J]. 光子学报, 2013, 42(1): 48–53. doi: 10.3788/gzxb20134201.0048.
QU Fuqi, HU Yihua, JIAO Junjun, et al. Satellite-to-satellite lidar imaging using reflective tomography[J]. Acta Photonica Sinica, 2013, 42(1): 48–53. doi: 10.3788/gzxb20134201.0048.
|
[119] |
胡以华, 张鑫源, 韩飞, 等. 反射层析激光雷达实现小远目标超分辨成像[J]. 中国激光, 2023, 50(3): 0316003. doi: 10.3788/CJL221519.
HU Yihua, ZHANG Xinyuan, HAN Fei, et al. Super-resolution imaging of small distant targets by reflective tomography Lidar[J]. Chinese Journal of Lasers, 2023, 50(3): 0316003. doi: 10.3788/CJL221519.
|
[120] |
李道京, 胡烜, 周凯, 等. 基于共形衍射光学系统的合成孔径激光雷达成像探测[J]. 光学学报, 2020, 40(4): 0428001. doi: 10.3788/AOS202040.0428001.
LI Daojing, HU Xuan, ZHOU Kai, et al. Synthetic aperture Lidar imaging detection based on conformal diffractive optical system[J]. Acta Optica Sinica, 2020, 40(4): 0428001. doi: 10.3788/AOS202040.0428001.
|
[121] |
杨坚, 马跃, 于文博, 等. 星载单光子激光雷达海洋噪声模型[J]. 红外与毫米波学报, 2024, 43(3): 393–398. doi: 10.11972/j.issn.1001-9014.2024.03.013.
YANG Jian, MA Yue, YU Wenbo, et al. Noise model of oceanic spaceborne photon counting LiDAR[J]. Journal of Infrared and Millimeter Waves, 2024, 43(3): 393–398. doi: 10.11972/j.issn.1001-9014.2024.03.013.
|