Citation: | ZHOU Haowen and WANG Qi. Extended object tracking based on variational marginalized particle filter for automotive radar[J]. Journal of Radars, in press. doi: 10.12000/JR25005 |
[1] |
PANDHARIPANDE A, CHENG C H, DAUWELS J, et al. Sensing and machine learning for automotive perception: A review[J]. IEEE Sensors Journal, 2023, 23(11): 11097–11115. doi: 10.1109/JSEN.2023.3262134.
|
[2] |
张新钰, 卢毅果, 高鑫, 等. 面向智能网联汽车的车路协同感知技术及发展趋势[J]. 自动化学报, 2025, 51(2): 233–248. doi: 10.16383/j.aas.c230575.
ZHANG Xinyu, LU Yiguo, GAO Xin, et al. Vehicle-road collaborative perception technology and development trend for intelligent connected vehicles[J]. Acta Automatica Sinica, 2025, 51(2): 233–248. doi: 10.16383/j.aas.c230575.
|
[3] |
ZHANG Yuxiao, CARBALLO A, YANG Hanting, et al. Perception and sensing for autonomous vehicles under adverse weather conditions: A survey[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2023, 196: 146–177. doi: 10.1016/j.isprsjprs.2022.12.021.
|
[4] |
SRIVASTAV A and MANDAL S. Radars for autonomous driving: A review of deep learning methods and challenges[J]. IEEE Access, 2023, 11: 97147–97168. doi: 10.1109/ACCESS.2023.3312382.
|
[5] |
黄岩, 张慧, 兰吕鸿康, 等. 汽车毫米波雷达信号处理技术综述[J]. 雷达学报, 2023, 12(5): 923–970. doi: 10.12000/JR23119.
HUANG Yan, ZHANG Hui, LAN Lyuhongkang, et al. Overview of signal processing techniques for automotive millimeter-wave radar[J]. Journal of Radars, 2023, 12(5): 923–970. doi: 10.12000/JR23119.
|
[6] |
PATOLE S M, TORLAK M, WANG Dan, et al. Automotive radars: A review of signal processing techniques[J]. IEEE Signal Processing Magazine, 2017, 34(2): 22–35. doi: 10.1109/MSP.2016.2628914.
|
[7] |
ZHUANG Yuan, WANG Binliang, HUAI Jianzhu, et al. 4D iRIOM: 4D imaging radar inertial odometry and mapping[J]. IEEE Robotics and Automation Letters, 2023, 8(6): 3246–3253. doi: 10.1109/LRA.2023.3266669.
|
[8] |
MEYER F and WILLIAMS J L. Scalable detection and tracking of geometric extended objects[J]. IEEE Transactions on Signal Processing, 2021, 69: 6283–6298. doi: 10.1109/TSP.2021.3121631.
|
[9] |
XIA Yuxuan, GARCÍA-FERNÁNDEZ Á F, MEYER F, et al. Trajectory PMB filters for extended object tracking using belief propagation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(6): 9312–9331. doi: 10.1109/TAES.2023.3317233.
|
[10] |
GRANSTRÖM K, FATEMI M, and SVENSSON L. Poisson multi-bernoulli mixture conjugate prior for multiple extended target filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 208–225. doi: 10.1109/TAES.2019.2920220.
|
[11] |
GRANSTRÖM K, BAUM M, and REUTER S. Extended object tracking: Introduction, overview, and applications[J]. Journal of Advances in Information Fusion, 2017, 12(2): 139–174.
|
[12] |
YURDAKUL O C, ÇETINKAYA M, ÇELEBI E, et al. A rao-blackwellized particle filter for superelliptical extended target tracking[C]. The 2024 27th International Conference on Information Fusion, Venice, Italy, 2024: 1–8. doi: 10.23919/FUSION59988.2024.10706504.
|
[13] |
KOCH J W. Bayesian approach to extended object and cluster tracking using random matrices[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(3): 1042–1059. doi: 10.1109/TAES.2008.4655362.
|
[14] |
LAN Jian and LI Xiaorong. Tracking of extended object or target group using random matrix: New model and approach[J]. IEEE Transactions on Aerospace and Electronic Systems, 2016, 52(6): 2973–2989. doi: 10.1109/TAES.2016.130346.
|
[15] |
FELDMANN M, FRÄNKEN D, and KOCH W. Tracking of extended objects and group targets using random matrices[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1409–1420. doi: 10.1109/TSP.2010.2101064.
|
[16] |
ORGUNER U. A variational measurement update for extended target tracking with random matrices[J]. IEEE Transactions on Signal Processing, 2012, 60(7): 3827–3834. doi: 10.1109/TSP.2012.2192927.
|
[17] |
YANG Shishan and BAUM M. Tracking the orientation and axes lengths of an elliptical extended object[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4720–4729. doi: 10.1109/TSP.2019.2929462.
|
[18] |
GRAMSCH C, YANG Shishan, and ALQADERI H. A batch update using multiplicative noise modelling for extended object tracking[C]. The 2024 27th International Conference on Information Fusion, Venice, Italy, 2024: 1–8. doi: 10.23919/FUSION59988.2024.10706375.
|
[19] |
ZHANG Le and LAN Jian. Tracking of extended object using random matrix with non-uniformly distributed measurements[J]. IEEE Transactions on Signal Processing, 2021, 69: 3812–3825. doi: 10.1109/TSP.2021.3090946.
|
[20] |
STEUERNAGEL S, THORMANN K, and BAUM M. Random matrix-based tracking of rectangular extended objects with contour measurements[C]. The 2024 27th International Conference on Information Fusion, Venice, Italy, 2024: 1–8. doi: 10.23919/FUSION59988.2024.10706288.
|
[21] |
CAO Xiaomeng, LAN Jian, LIU Yushuang, et al. Tracking of rectangular object using key points with regionally concentrated measurements[J]. IEEE Transactions on Intelligent Transportation Systems, 2024, 25(6): 5312–5327. doi: 10.1109/TITS.2023.3332606.
|
[22] |
XIA Yuxuan, WANG Pu, BERNTORP K, et al. Learning-based extended object tracking using hierarchical truncation measurement model with automotive radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(4): 1013–1029. doi: 10.1109/JSTSP.2021.3058062.
|
[23] |
TUNCER B, ORGUNER U, and ÖZKAN E. Multi-ellipsoidal extended target tracking with variational bayes inference[J]. IEEE Transactions on Signal Processing, 2022, 70: 3921–3934. doi: 10.1109/TSP.2022.3192617.
|
[24] |
BAUM M and HANEBECK U D. Extended object tracking with random hypersurface models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1): 149–159. doi: 10.1109/TAES.2013.120107.
|
[25] |
WAHLSTRÖM N and ÖZKAN E. Extended target tracking using Gaussian processes[J]. IEEE Transactions on Signal Processing, 2015, 63(16): 4165–4178. doi: 10.1109/TSP.2015.2424194.
|
[26] |
郭云飞, 李勇, 任昕, 等. 基于高斯过程的多机动扩展目标跟踪[J]. 自动化学报, 2020, 46(11): 2392–2403. doi: 10.16383/j.aas.c180849.
GUO Yunfei, LI Yong, REN Xin, et al. Multiple maneuvering extended target tracking based on Gaussian process[J]. Acta Automatica Sinica, 2020, 46(11): 2392–2403. doi: 10.16383/j.aas.c180849.
|
[27] |
陈辉, 边斌超, 连峰, 等. 基于Transformer复杂运动辨识的机动星凸形扩展目标跟踪方法[J]. 雷达学报, 2024, 13(3): 629–645. doi: 10.12000/JR24031.
CHEN Hui, BIAN Binchao, LIAN Feng, et al. A novel method for tracking complex maneuvering star convex extended targets using Transformer network[J]. Journal of Radars, 2024, 13(3): 629–645. doi: 10.12000/JR24031.
|
[28] |
LAN Jian. Extended object tracking using random matrix with extension-dependent measurement numbers[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(4): 4464–4477. doi: 10.1109/TAES.2023.3241888.
|
[29] |
ŞAHIN K K, BALCI A E, and ÖZKAN E. Random matrix extended target tracking for trajectory-aligned and drifting targets[J]. IET Radar, Sonar & Navigation, 2024, 18(11): 2247–2263. doi: 10.1049/rsn2.12628.
|
[30] |
WEN Zheng, LAN Jian, ZHENG Le, et al. Velocity-dependent orientation estimation using variance adaptation for extended object tracking[J]. IEEE Signal Processing Letters, 2024, 31: 3109–3113. doi: 10.1109/LSP.2024.3492718.
|
[31] |
李佳彤, 杨金龙. 基于PMBM滤波的机动非椭圆扩展目标跟踪算法[J]. 信号处理, 2023, 39(6): 1108–1119. doi: 10.16798/j.issn.1003-0530.2023.06.016.
LI Jiatong and YANG Jinlong. A maneuvering non-ellipsoidal extended target tracking algorithm based on PMBM filter[J]. Journal of Signal Processing, 2023, 39(6): 1108–1119. doi: 10.16798/j.issn.1003-0530.2023.06.016.
|
[32] |
LI Guchong, LI Gang, and HE You. PMBM-based unresolved-group object tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(4): 4229–4240. doi: 10.1109/TAES.2024.3373561.
|
[33] |
GARCÍA-FERNÁNDEZ Á F, XIA Yuxuan, and SVENSSON L. Poisson multi-bernoulli mixture filter with general target-generated measurements and arbitrary clutter[J]. IEEE Transactions on Signal Processing, 2023, 71: 1895–1906. doi: 10.1109/TSP.2023.3278944.
|
[34] |
陈辉, 张丁丁, 连峰, 等. 扩展目标跟踪Student’s t逆Wishart平滑算法[J]. 电子与信息学报, 2024, 46(8): 3353–3362. doi: 10.11999/JEIT231145.
CHEN Hui, ZHANG Dingding, LIAN Feng, et al. Student’s t inverse Wishart smoothing algorithm for extended target tracking[J]. Journal of Electronics & Information Technology, 2024, 46(8): 3353–3362. doi: 10.11999/JEIT231145.
|
[35] |
GRANSTRÖM K, NATALE A, BRACA P, et al. Gamma Gaussian inverse Wishart probability hypothesis density for extended target tracking using X-band marine radar data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(12): 6617–6631. doi: 10.1109/TGRS.2015.2444794.
|
[36] |
LAN Jian and LI Xiaorong. Extended-object or group-target tracking using random matrix with nonlinear measurements[J]. IEEE Transactions on Signal Processing, 2019, 67(19): 5130–5142. doi: 10.1109/TSP.2019.2935866.
|
[37] |
THORMANN K and BAUM M. Incorporating range rate measurements in EKF-based elliptical extended object tracking[C]. The 2021 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Karlsruhe, Germany, 2021: 1–6. doi: 10.1109/MFI52462.2021.9591170.
|
[38] |
KELLNER D, BARJENBRUCH M, KLAPPSTEIN J, et al. Tracking of extended objects with high-resolution Doppler radar[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(5): 1341–1353. doi: 10.1109/TITS.2015.2501759.
|
[39] |
SCHON T, GUSTAFSSON F, and NORDLUND P J. Marginalized particle filters for mixed linear/nonlinear state-space models[J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2279–2289. doi: 10.1109/TSP.2005.849151.
|
[40] |
MUSTIERE F, BOLIC M, and BOUCHARD M. Rao-blackwellised particle filters: Examples of applications[C]. The 2006 Canadian Conference on Electrical and Computer Engineering, Ottawa, ON, Canada, 2006: 1196–1200. doi: 10.1109/CCECE.2006.277461.
|
[41] |
DOUCET A, DE FREITAS N, MURPHY K, et al. Rao-blackwellised particle filtering for dynamic Bayesian networks[C]. The Sixteenth Conference on Uncertainty in Artificial Intelligence, Stanford, California, 2000: 176–183. doi: 10.5555/2073946.2073968.
|
[42] |
CHENG Cheng, TOURNERET J Y, and LU Xiaodong. A marginalised particle filter with variational inference for non-linear state-space models with Gaussian mixture noise[J]. IET Radar, Sonar & Navigation, 2022, 16(2): 238–248. doi: 10.1049/rsn2.12179.
|
[43] |
BADAR T, SÄRKKÄ S, ZHAO Zheng, et al. Rao-blackwellized particle filter using noise adaptive kalman filter for fully mixing state-space models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 6972–6982. doi: 10.1109/TAES.2024.3409644.
|
[44] |
CHENG Cheng and TOURNERET J Y. A variational marginalized particle filter for jump Markov nonlinear systems with unknown transition probabilities[J]. Signal Processing, 2021, 188: 108226. doi: 10.1016/j.sigpro.2021.108226.
|
[45] |
TZIKAS D G, LIKAS A C, and GALATSANOS N P. The variational approximation for Bayesian inference[J]. IEEE Signal Processing Magazine, 2008, 25(6): 131–146. doi: 10.1109/MSP.2008.929620.
|
[46] |
BISHOP C M. Pattern Recognition and Machine Learning[M]. New York: Springer, 2006: 462–465.
|
[47] |
ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188. doi: 10.1109/78.978374.
|
[48] |
胡玉梅, 潘泉, 胡振涛, 等. 基于自然梯度的噪声自适应变分贝叶斯滤波算法[J]. 自动化学报, 2023, 49(10): 2094–2108. doi: 10.16383/j.aas.c210964.
HU Yumei, PAN Quan, HU Zhentao, et al. A novel noise adaptive variational Bayesian filter using natural gradient[J]. Acta Automatica Sinica, 2023, 49(10): 2094–2108. doi: 10.16383/j.aas.c210964.
|