Citation: | PENG Ziqiang, WANG Han, XUE Ruikai, et al. Research on ship feature recognition and tracking method based on long-line array single-photon LiDAR[J]. Journal of Radars, 2025, 14(3): 589–601. doi: 10.12000/JR25003 |
[1] |
LIU Zhixiang, ZHANG Youmin, YU Xiang, et al. Unmanned surface vehicles: An overview of developments and challenges[J]. Annual Reviews in Control, 2016, 41: 71–93. doi: 10.1016/j.arcontrol.2016.04.018.
|
[2] |
BAI Xiangen, LI Bohan, XU Xiaofei, et al. A review of current research and advances in unmanned surface vehicles[J]. Journal of Marine Science and Application, 2022, 21(2): 47–58. doi: 10.1007/s11804-022-00276-9.
|
[3] |
LEXAU S J N, BREIVIK M, and LEKKAS A M. Automated docking for marine surface vessels—a survey[J]. IEEE Access, 2023, 11: 132324–132367. doi: 10.1109/ACCESS.2023.3335912.
|
[4] |
HENTSCHKE M and DE FREITAS E P. Design and implementation of a control and navigation system for a small unmanned aerial vehicle[J]. IFAC-PapersOnLine, 2016, 49(30): 320–324. doi: 10.1016/j.ifacol.2016.11.155.
|
[5] |
IMANBERDIYEV N, FU Changhong, KAYACAN E, et al. Autonomous navigation of UAV by using real-time model-based reinforcement learning[C]. 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 2016: 1–6. doi: 10.1109/ICARCV.2016.7838739.
|
[6] |
王文明. 无人船自主靠泊避碰决策与运动控制研究[D]. [硕士论文], 大连海事大学, 2022. doi: 10.26989/d.cnki.gdlhu.2022.001524.
WANG Wenming. Research on collision avoidance decision-making and motion control for autonomous berthing of unmanned surface vehicles[D]. [Master dissertation], Dalian Maritime University, 2022. doi: 10.26989/d.cnki.gdlhu.2022.001524.
|
[7] |
LI Shengyu, WANG Shiwen, ZHOU Yuxuan, et al. Tightly coupled integration of GNSS, INS, and LiDAR for vehicle navigation in urban environments[J]. IEEE Internet of Things Journal, 2022, 9(24): 24721–24735. doi: 10.1109/JIOT.2022.3194544.
|
[8] |
ABDELAZIZ N and EL-RABBANY A. An integrated INS/LiDAR SLAM navigation system for GNSS-challenging environments[J]. Sensors, 2022, 22(12): 4327. doi: 10.3390/s22124327.
|
[9] |
SAWADA R and HIRATA K. Mapping and localization for autonomous ship using LiDAR SLAM on the sea[J]. Journal of Marine Science and Technology, 2023, 28(2): 410–421. doi: 10.1007/s00773-023-00931-y.
|
[10] |
BORETTI A. A perspective on single-photon LiDAR systems[J]. Microwave and Optical Technology Letters, 2024, 66(1): e33918. doi: 10.1002/mop.33918.
|
[11] |
WANG Xiaoheng and ZHU Jun. Vehicle-mounted imaging lidar with nonuniform distribution of instantaneous field of view[J]. Optics & Laser Technology, 2024, 169: 110063. doi: 10.1016/j.optlastec.2023.110063.
|
[12] |
HASAN M, HANAWA J, GOTO R, et al. LiDAR-based detection, tracking, and property estimation: A contemporary review[J]. Neurocomputing, 2022, 506: 393–405. doi: 10.1016/j.neucom.2022.07.087.
|
[13] |
BEWLEY A, GE Zongyuan, OTT L, et al. Simple online and realtime tracking[C]. 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, USA, 2016: 3464–3468. doi: 10.1109/ICIP.2016.7533003.
|
[14] |
VEERAMANI B, RAYMOND J W, and CHANDA P. DeepSort: Deep convolutional networks for sorting haploid maize seeds[J]. BMC Bioinformatics, 2018, 19(9): 289. doi: 10.1186/s12859-018-2267-2.
|
[15] |
CHEN Long, AI Haizhou, ZHUANG Zijie, et al. Real-time multiple people tracking with deeply learned candidate selection and person re-identification[C]. 2018 IEEE International Conference on Multimedia and Expo (ICME), San Diego, USA, 2018: 1–6. doi: 10.1109/ICME.2018.8486597.
|
[16] |
WENG Xinshuo, WANG Jianren, HELD D, et al. AB3DMOT: A baseline for 3D multi-object tracking and new evaluation metrics[J]. arXiv: 2008.08063. doi: 10.48550/arXiv.2008.08063.
|
[17] |
YIN Tianwei, ZHOU Xingyi, and KRÄHENBÜHL P. Center-based 3d object detection and tracking[C]. IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, USA, 2021: 11779–11788. doi: 10.1109/CVPR46437.2021.01161.
|
[18] |
LUO Wenjie, YANG Bin, and URTASUN R. Fast and furious: Real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3569–3577. doi: 10.1109/CVPR.2018.00376.
|
[19] |
YOU Xin, DING Ming, ZHANG Minghui, et al. PnPNet: Pull-and-push networks for volumetric segmentation with boundary confusion[J]. arXiv: 2312.08323. doi: 10.48550/arXiv.2312.08323.
|
[20] |
MACLACHLAN R and MERTZ C. Tracking of moving objects from a moving vehicle using a scanning laser rangefinder[C]. 2006 IEEE Intelligent Transportation Systems Conference, Toronto, Canada, 2006: 301–306. doi: 10.1109/ITSC.2006.1706758.
|
[21] |
SHEN Xiaotong, PENDLETON S, and ANG M H. Efficient L-shape fitting of laser scanner data for vehicle pose estimation[C]. 2015 IEEE 7th International Conference on Cybernetics and Intelligent Systems (CIS) and IEEE Conference on Robotics, Automation and Mechatronics (RAM), Siem Reap, Cambodia, 2015: 173–178. doi: 10.1109/ICCIS.2015.7274568.
|
[22] |
ZHANG Xiao, XU Wenda, DONG Chiyu, et al. Efficient L-shape fitting for vehicle detection using laser scanners[C]. 2017 IEEE Intelligent Vehicles Symposium (IV), Los Angeles, USA, 2017: 54–59. doi: 10.1109/IVS.2017.7995698.
|
[23] |
MA Rujia, KONG Wei, CHEN Tao, et al. KNN based denoising algorithm for photon-counting LiDAR: Numerical simulation and parameter optimization design[J]. Remote Sensing, 2022, 14(24): 6236. doi: 10.3390/rs14246236.
|
[24] |
PRIO M H, PATEL S, and KOLEY G. Implementation of dynamic radius outlier removal (DROR) algorithm on LiDAR point cloud data with arbitrary white noise addition[C]. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland, 2022: 1–7. doi: 10.1109/VTC2022-Spring54318.2022.9860643.
|
[25] |
TSENG C C, CHEN H T, and CHEN K C. On the distance distributions of the wireless Ad Hoc networks[C]. 2006 IEEE 63rd Vehicular Technology Conference, Melbourne, Australia, 2006: 772–776. doi: 10.1109/VETECS.2006.1682929.
|
[26] |
KONSTANTINOVA P, UDVAREV A, and SEMERDJIEV T. A study of a target tracking algorithm using global nearest neighbor approach[C]. The 4th International Conference on Computer Systems and Technologies, Rousse, Bulgaria, 2003: 290–295. doi: 10.1145/973620.973668.
|
[27] |
BAR-SHALOM Y, DAUM F, and HUANG J. The probabilistic data association filter[J]. IEEE Control Systems Magazine, 2009, 29(6): 82–100. doi: 10.1109/MCS.2009.934469.
|
[28] |
FORTMANN T, BAR-SHALOM Y, and SCHEFFE M. Sonar tracking of multiple targets using joint probabilistic data association[J]. IEEE Journal of Oceanic Engineering, 1983, 8(3): 173–184. doi: 10.1109/JOE.1983.1145560.
|
[29] |
KUHN H W. The Hungarian method for the assignment problem[J]. Naval Research Logistics (NRL), 1955, 2(1-2): 83–97. doi: 10.1002/nav.3800020109.
|
[30] |
YOON K, KIM D Y, YOON Y C, et al. Data association for multi-object tracking via deep neural networks[J]. Sensors, 2019, 19(3): 559. doi: 10.3390/s19030559.
|
[31] |
ARNOLD J, SHAW S W, and PASTERNACK H. Efficient target tracking using dynamic programming[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(1): 44–56. doi: 10.1109/7.249112.
|
[32] |
PENG Ziqiang, WANG Han, SHE Xiaokai, et al. Marine remote target signal extraction based on 128 line-array single photon LiDAR[J]. Infrared Physics & Technology, 2024, 143: 105592. doi: 10.1016/j.infrared.2024.105592.
|