Volume 14 Issue 3
Jun.  2025
Turn off MathJax
Article Contents
LIU Ningbo, LI Jia, WANG Guoqing, et al. Sea-detecting radar experiment and target feature data acquisition for multisource observation dataset of maritime targets[J]. Journal of Radars, 2025, 14(3): 754–780. doi: 10.12000/JR25001
Citation: LIU Ningbo, LI Jia, WANG Guoqing, et al. Sea-detecting radar experiment and target feature data acquisition for multisource observation dataset of maritime targets[J]. Journal of Radars, 2025, 14(3): 754–780. doi: 10.12000/JR25001

Sea-detecting Radar Experiment and Target Feature Data Acquisition for Multisource Observation Dataset of Maritime Targets

DOI: 10.12000/JR25001 CSTR: 32380.14.JR25001
Funds:  The National Natural Science Foundation of China (62388102, 62101583), Taishan Scholars Program (tsqn202211246)
More Information
  • Corresponding author: LIU Ningbo, lnb198300@163.com; WANG Guoqing, gqwang80@126.com
  • Received Date: 2025-01-03
  • Rev Recd Date: 2025-04-23
  • Available Online: 2025-05-08
  • Publish Date: 2025-05-30
  • Maritime target detection and identification technology are developed using large-scale, high-quality multi-sensor measurement data. Therefore, the Sea Detection Radar Data Sharing Program (SDRDSP) was upgraded to the Maritime Target Data Sharing Program (MTDSP), integrating multiple observation modalities, such as HH-polarized radar, VV-polarized radar, electro-optical devices, and Automatic Identification System (AIS) equipment to conduct multisource observation experiments on maritime vessel targets. The program collects various data types, including radar intermediate frequency/video echo slice data, visible and infrared imagery, AIS static and dynamic messages, and meteorological and hydrological data, covering representative sea conditions and multiple vessel types. A comprehensive multisource observation dataset was constructed, enabling the matching and annotation of multimodal data for the same target. Moreover, an automated data management system was implemented to support data storage, conditional retrieval, and batch export, providing a solid foundation for the automated acquisition, long-term accumulation, and efficient use of maritime target characteristic data. Based on this system and measured data, the time/frequency domain features of the same and different vessel targets under different sea states, attitudes, polarization conditions are compared and analyzed, and the statistical conclusion of the change in target features is obtained.

     

  • loading
  • [1]
    李晨瑄, 胥辉旗, 钱坤, 等. 基于深度学习的舰船目标检测技术综述[J]. 兵器装备工程学报, 2021, 42(12): 57–63. doi: 10.11809/bqzbgcxb2021.12.008.

    LI Chenxuan, XU Huiqi, QIAN Kun, et al. Survey of ship detection technology based on deep learning[J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 57–63. doi: 10.11809/bqzbgcxb2021.12.008.
    [2]
    黄泽贤, 吴凡路, 傅瑶, 等. 基于深度学习的遥感图像舰船目标检测算法综述[J]. 光学 精密工程, 2023, 31(15): 2295–2318. doi: 10.37188/OPE.20233115.2295.

    HUANG Zexian, WU Fanlu, FU Yao, et al. Review of deep learning-based algorithms for ship target detection from remote sensing images[J]. Optics and Precision Engineering, 2023, 31(15): 2295–2318. doi: 10.37188/OPE.20233115.2295.
    [3]
    WU Jinshan, LI Jiawen, LI Ronghui, et al. A fast maritime target identification algorithm for offshore ship detection[J]. Applied Sciences, 2022, 12(10): 4938. doi: 10.3390/app12104938.
    [4]
    陈小龙, 饶桂林, 关键, 等. 被动雷达低慢小探测数据集(LSS-PR-1.0)及多域特征提取和分析方法[J]. 雷达学报(中英文), 2025, 14(2): 249–268. doi: 10.12000/JR24145.

    CHEN Xiaolong, RAO Guilin, GUAN Jian, et al. Passive radar low slow small detection dataset (LSS-PR-1.0) and multi-domain feature extraction and analysis methods[J]. Journal of Radars, 2025, 14(2): 249–268. doi: 10.12000/JR24145.
    [5]
    WANG Xiang, LIU Jingxian, LIU Xiangang, et al. Ship feature recognition methods for deep learning in complex marine environments[J]. Complex & Intelligent Systems, 2022, 8(5): 3881–3897. doi: 10.1007/s40747-022-00683-z.
    [6]
    WU Di, CAO Lihua, ZHOU Pengji, et al. Infrared small-target detection based on radiation characteristics with a multimodal feature fusion network[J]. Remote Sensing, 2022, 14(15): 3570. doi: 10.3390/rs14153570.
    [7]
    ROHEDA S, KRIM H, and RIGGAN B S. Robust multi-modal sensor fusion: An adversarial approach[J]. IEEE Sensors Journal, 2021, 21(2): 1885–1896. doi: 10.1109/JSEN.2020.3018698.
    [8]
    YU Meng, HAN Shaojie, WANG Tengfei, et al. An approach to accurate ship image recognition in a complex maritime transportation environment[J]. Journal of Marine Science and Engineering, 2022, 10(12): 1903. doi: 10.3390/jmse10121903.
    [9]
    VAN DER STAP N, VAN OPBROEK A, HUIZINGA W, et al. Maritime detection framework 2.0: A new approach of maritime target detection in electro-optical sensors[C]. The SPIE 10795, Electro-Optical and Infrared Systems: Technology and Applications XV, Berlin, Germany, 2018: 1079507. doi: 10.1117/12.2501424.
    [10]
    ZOU Junjie, YUAN Wei, and YU Menghong. Maritime target detection of intelligent ship based on faster R-CNN[C]. 2019 Chinese Automation Congress (CAC), Hangzhou, China, 2019: 4113–4117. doi: 10.1109/CAC48633.2019.8996260.
    [11]
    关键, 刘宁波, 王国庆, 等. 雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集[J]. 雷达学报, 2023, 12(2): 456–469. doi: 10.12000/JR23029.

    GUAN Jian, LIU Ningbo, WANG Guoqing, et al. Sea-detecting radar experiment and target feature data acquisition for dual polarization multistate scattering dataset of marine targets[J]. Journal of Radars, 2023, 12(2): 456–469. doi: 10.12000/JR23029.
    [12]
    刘宁波, 丁昊, 黄勇, 等. X波段雷达对海探测试验与数据获取年度进展[J]. 雷达学报, 2021, 10(1): 173–182. doi: 10.12000/JR21011.

    LIU Ningbo, DING Hao, HUANG Yong, et al. Annual progress of the sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2021, 10(1): 173–182. doi: 10.12000/JR21011.
    [13]
    刘宁波, 董云龙, 王国庆, 等. X波段雷达对海探测试验与数据获取[J]. 雷达学报, 2019, 8(5): 656–667. doi: 10.12000/JR19089.

    LIU Ningbo, DONG Yunlong, WANG Guoqing, et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8(5): 656–667. doi: 10.12000/JR19089.
    [14]
    FARAHNAKIAN F and HEIKKONEN J. Deep learning based multi-modal fusion architectures for maritime vessel detection[J]. Remote Sensing, 2020, 12(16): 2509. doi: 10.3390/rs12162509.
    [15]
    LONG Jiawen, FANG Zhixiang, and WANG Lubin. SK-MMFMNet: A multi-dimensional fusion network of remote sensing images and EEG signals for multi-scale marine target recognition[J]. Information Fusion, 2024, 108: 102402. doi: 10.1016/j.inffus.2024.102402.
    [16]
    ZHU Xufang, HUANG Wenliang, and CHEN Zhongjie. Summarize of multi-sensor information fusion technology for USV colony[C]. 2022 International Conference on Cloud Computing, Big Data and Internet of Things (3CBIT), Wuhan, China, 2022: 149–154. doi: 10.1109/3CBIT57391.2022.00038.
    [17]
    QU Yufu, ZHANG Guirong, ZOU Zhaofan, et al. Active multimodal sensor system for target recognition and tracking[J]. Sensors, 2017, 17(7): 1518. doi: 10.3390/s17071518.
    [18]
    于乐凯, 曹政, 孙艳丽, 等. 海上舰船目标可见光/红外图像匹配方法[J]. 海军航空大学学报, 2024, 39(6): 755–764, 772. doi: 10.7682/j.issn.2097-1427.2024.06.013.

    YU Lekai, CAO Zheng, SUN Yanli, et al. Visible and infrared images matching method for maritime ship targets[J]. Journal of Naval Aviation University, 2024, 39(6): 755–764, 772. doi: 10.7682/j.issn.2097-1427.2024.06.013.
    [19]
    JI Jingyu, ZHANG Yuhua, HU Yongjiang, et al. Fusion of infrared and visible images based on three-Scale decomposition and ResNet feature transfer[J]. Entropy, 2022, 24(10): 1356. doi: 10.3390/e24101356.
    [20]
    GENG Keke, ZOU Wei, YIN Guodong, et al. Low-observable targets detection for autonomous vehicles based on dual-modal sensor fusion with deep learning approach[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(9): 2270–2283. doi: 10.1177/0954407019859821.
    [21]
    OLTMANN J H and BOBER S. The shipborne automatic identification system (AIS)-its idea, its technology, and its applications in maritime and inland shipping[C]. European Symposium on Transport Telematics, Potsdam, Germany, 1999: 125–132.
    [22]
    SHI Xin, ZHAO Shuyi, and CHEN Zongwei. Research on key technologies and equipment composition of airborne equipment in automatic identification system[C]. Tenth International Conference on Mechanical Engineering, Materials, and Automation Technology (MMEAT 2024), Wuhan, China, 2024: 132614E. doi: 10.1117/12.3046617.
    [23]
    刘东, 武裕鑫, 孙树政. 基于不同海浪谱船舶极限海况运动统计特征值预报分析[J]. 舰船科学技术, 2024, 46(9): 60–65. doi: 10.3404/j.issn.1672-7649.2024.09.010.

    LIU Dong, WU Yuxin, and SUN Shuzheng. Prediction analysis of statistical eigenvalues of ship motion based on different wave spectra under rough sea conditions[J]. Ship Science and Technology, 2024, 46(9): 60–65. doi: 10.3404/j.issn.1672-7649.2024.09.010.
    [24]
    魏仪文, 郭立新, 殷红成. 海洋内波对海面电磁散射特性的影响分析[J]. 雷达学报, 2015, 4(3): 326–333. doi: 10.12000/JR15060.

    WEI Yiwen, GUO Lixin, and YIN Hongcheng. Analysis of the scattering characteristics of sea surface with the influence from internal wave[J]. Journal of Radars, 2015, 4(3): 326–333. doi: 10.12000/JR15060.
    [25]
    王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119–131. doi: 10.12000/JR16039.

    WANG Xuesong. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119–131. doi: 10.12000/JR16039.
    [26]
    韩静雯, 杨勇, 连静, 等. 基于极化与距离像特征融合的雷达导引头角反射器鉴别方法[J]. 系统工程与电子技术, 2024, 46(11): 3658–3670. doi: 10.12305/j.issn.1001-506X.2024.11.08.

    HAN Jingwen, YANG Yong, LIAN Jing, et al. Identification method of corner reflector based on polarization and HRRP feature fusion for radar seeker[J]. Systems Engineering and Electronics, 2024, 46(11): 3658–3670. doi: 10.12305/j.issn.1001-506X.2024.11.08.
    [27]
    CHEN Zhongbiao, HE Yijun, and YANG Wankang. Study of ocean waves measured by collocated HH and VV polarized X-band marine radars[J]. International Journal of Antennas and Propagation, 2016, 2016(1): 8257930. doi: 10.1155/2016/8257930.
    [28]
    YANG Shiman, CAO Zheng, LIU Ningbo, et al. Maritime electro-optical image object matching based on improved YOLOv9[J]. Electronics, 2024, 13(14): 2774. doi: 10.3390/electronics13142774.
    [29]
    田凯祥, 于晓涵, 王中训, 等. 基于实测数据的海杂波与海面小目标特征分析[J]. 海军航空大学学报, 2023, 38(4): 313–322. doi: 10.7682/j.issn.2097-1427.2023.04.002.

    TIAN Kaixiang, YU Xiaohan, WANG Zhongxun, et al. Analysis of sea clutter and small target characteristics based on measured data[J]. Journal of Naval Aviation University, 2023, 38(4): 313–322. doi: 10.7682/j.issn.2097-1427.2023.04.002.
    [30]
    丁昊, 朱晨光, 刘宁波, 等. 高海况条件下海面漂浮小目标特征提取与分析[J]. 海军航空大学学报, 2023, 38(4): 301–312. doi: 10.7682/j.issn.2097-1427.2023.04.001.

    DING Hao, ZHU Chenguang, LIU Ningbo, et al. Feature extraction and analysis of small floating targets in high sea conditions[J]. Journal of Naval Aviation University, 2023, 38(4): 301–312. doi: 10.7682/j.issn.2097-1427.2023.04.001.
    [31]
    GAO Fei, KONG Lingzhe, LANG Rongling, et al. SAR target incremental recognition based on features with strong separability[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5202813. doi: 10.1109/TGRS.2024.3351636.
    [32]
    KONG Lingzhe, GAO Fei, HE Xiaoyu, et al. Few-shot class-incremental SAR target recognition via orthogonal distributed features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(1): 325–341. doi: 10.1109/TAES.2024.3443014.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(673) PDF downloads(215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint