| Citation: | LIU Ningbo, LI Jia, WANG Guoqing, et al. Sea-detecting radar experiment and target feature data acquisition for multisource observation dataset of maritime targets[J]. Journal of Radars, 2025, 14(3): 754–780. doi: 10.12000/JR25001 | 
	                | [1] | 
					 李晨瑄, 胥辉旗, 钱坤, 等. 基于深度学习的舰船目标检测技术综述[J]. 兵器装备工程学报, 2021, 42(12): 57–63. doi:  10.11809/bqzbgcxb2021.12.008. 
					LI Chenxuan, XU Huiqi, QIAN Kun, et al. Survey of ship detection technology based on deep learning[J]. Journal of Ordnance Equipment Engineering, 2021, 42(12): 57–63. doi:  10.11809/bqzbgcxb2021.12.008. 
						
					 | 
			
| [2] | 
					 黄泽贤, 吴凡路, 傅瑶, 等. 基于深度学习的遥感图像舰船目标检测算法综述[J]. 光学 精密工程, 2023, 31(15): 2295–2318. doi:  10.37188/OPE.20233115.2295. 
					HUANG Zexian, WU Fanlu, FU Yao, et al. Review of deep learning-based algorithms for ship target detection from remote sensing images[J]. Optics and Precision Engineering, 2023, 31(15): 2295–2318. doi:  10.37188/OPE.20233115.2295. 
						
					 | 
			
| [3] | 
					 WU Jinshan, LI Jiawen, LI Ronghui, et al. A fast maritime target identification algorithm for offshore ship detection[J]. Applied Sciences, 2022, 12(10): 4938. doi:  10.3390/app12104938. 
						
					 | 
			
| [4] | 
					 陈小龙, 饶桂林, 关键, 等. 被动雷达低慢小探测数据集(LSS-PR-1.0)及多域特征提取和分析方法[J]. 雷达学报(中英文), 2025, 14(2): 249–268. doi:  10.12000/JR24145. 
					CHEN Xiaolong, RAO Guilin, GUAN Jian, et al. Passive radar low slow small detection dataset (LSS-PR-1.0) and multi-domain feature extraction and analysis methods[J]. Journal of Radars, 2025, 14(2): 249–268. doi:  10.12000/JR24145. 
						
					 | 
			
| [5] | 
					 WANG Xiang, LIU Jingxian, LIU Xiangang, et al. Ship feature recognition methods for deep learning in complex marine environments[J]. Complex & Intelligent Systems, 2022, 8(5): 3881–3897. doi:  10.1007/s40747-022-00683-z. 
						
					 | 
			
| [6] | 
					 WU Di, CAO Lihua, ZHOU Pengji, et al. Infrared small-target detection based on radiation characteristics with a multimodal feature fusion network[J]. Remote Sensing, 2022, 14(15): 3570. doi:  10.3390/rs14153570. 
						
					 | 
			
| [7] | 
					 ROHEDA S, KRIM H, and RIGGAN B S. Robust multi-modal sensor fusion: An adversarial approach[J]. IEEE Sensors Journal, 2021, 21(2): 1885–1896. doi:  10.1109/JSEN.2020.3018698. 
						
					 | 
			
| [8] | 
					 YU Meng, HAN Shaojie, WANG Tengfei, et al. An approach to accurate ship image recognition in a complex maritime transportation environment[J]. Journal of Marine Science and Engineering, 2022, 10(12): 1903. doi:  10.3390/jmse10121903. 
						
					 | 
			
| [9] | 
					 VAN DER STAP N, VAN OPBROEK A, HUIZINGA W, et al. Maritime detection framework 2.0: A new approach of maritime target detection in electro-optical sensors[C]. The SPIE 10795, Electro-Optical and Infrared Systems: Technology and Applications XV, Berlin, Germany, 2018: 1079507. doi:  10.1117/12.2501424. 
						
					 | 
			
| [10] | 
					 ZOU Junjie, YUAN Wei, and YU Menghong. Maritime target detection of intelligent ship based on faster R-CNN[C]. 2019 Chinese Automation Congress (CAC), Hangzhou, China, 2019: 4113–4117. doi:  10.1109/CAC48633.2019.8996260. 
						
					 | 
			
| [11] | 
					 关键, 刘宁波, 王国庆, 等. 雷达对海探测试验与目标特性数据获取——海上目标双极化多海况散射特性数据集[J]. 雷达学报, 2023, 12(2): 456–469. doi:  10.12000/JR23029. 
					GUAN Jian, LIU Ningbo, WANG Guoqing, et al. Sea-detecting radar experiment and target feature data acquisition for dual polarization multistate scattering dataset of marine targets[J]. Journal of Radars, 2023, 12(2): 456–469. doi:  10.12000/JR23029. 
						
					 | 
			
| [12] | 
					 刘宁波, 丁昊, 黄勇, 等. X波段雷达对海探测试验与数据获取年度进展[J]. 雷达学报, 2021, 10(1): 173–182. doi:  10.12000/JR21011. 
					LIU Ningbo, DING Hao, HUANG Yong, et al. Annual progress of the sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2021, 10(1): 173–182. doi:  10.12000/JR21011. 
						
					 | 
			
| [13] | 
					 刘宁波, 董云龙, 王国庆, 等. X波段雷达对海探测试验与数据获取[J]. 雷达学报, 2019, 8(5): 656–667. doi:  10.12000/JR19089. 
					LIU Ningbo, DONG Yunlong, WANG Guoqing, et al. Sea-detecting X-band radar and data acquisition program[J]. Journal of Radars, 2019, 8(5): 656–667. doi:  10.12000/JR19089. 
						
					 | 
			
| [14] | 
					 FARAHNAKIAN F and HEIKKONEN J. Deep learning based multi-modal fusion architectures for maritime vessel detection[J]. Remote Sensing, 2020, 12(16): 2509. doi:  10.3390/rs12162509. 
						
					 | 
			
| [15] | 
					 LONG Jiawen, FANG Zhixiang, and WANG Lubin. SK-MMFMNet: A multi-dimensional fusion network of remote sensing images and EEG signals for multi-scale marine target recognition[J]. Information Fusion, 2024, 108: 102402. doi:  10.1016/j.inffus.2024.102402. 
						
					 | 
			
| [16] | 
					 ZHU Xufang, HUANG Wenliang, and CHEN Zhongjie. Summarize of multi-sensor information fusion technology for USV colony[C]. 2022 International Conference on Cloud Computing, Big Data and Internet of Things (3CBIT), Wuhan, China, 2022: 149–154. doi:  10.1109/3CBIT57391.2022.00038. 
						
					 | 
			
| [17] | 
					 QU Yufu, ZHANG Guirong, ZOU Zhaofan, et al. Active multimodal sensor system for target recognition and tracking[J]. Sensors, 2017, 17(7): 1518. doi:  10.3390/s17071518. 
						
					 | 
			
| [18] | 
					 于乐凯, 曹政, 孙艳丽, 等. 海上舰船目标可见光/红外图像匹配方法[J]. 海军航空大学学报, 2024, 39(6): 755–764, 772. doi:  10.7682/j.issn.2097-1427.2024.06.013. 
					YU Lekai, CAO Zheng, SUN Yanli, et al. Visible and infrared images matching method for maritime ship targets[J]. Journal of Naval Aviation University, 2024, 39(6): 755–764, 772. doi:  10.7682/j.issn.2097-1427.2024.06.013. 
						
					 | 
			
| [19] | 
					 JI Jingyu, ZHANG Yuhua, HU Yongjiang, et al. Fusion of infrared and visible images based on three-Scale decomposition and ResNet feature transfer[J]. Entropy, 2022, 24(10): 1356. doi:  10.3390/e24101356. 
						
					 | 
			
| [20] | 
					 GENG Keke, ZOU Wei, YIN Guodong, et al. Low-observable targets detection for autonomous vehicles based on dual-modal sensor fusion with deep learning approach[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(9): 2270–2283. doi:  10.1177/0954407019859821. 
						
					 | 
			
| [21] | 
					 OLTMANN J H and BOBER S. The shipborne automatic identification system (AIS)-its idea, its technology, and its applications in maritime and inland shipping[C]. European Symposium on Transport Telematics, Potsdam, Germany, 1999: 125–132. 
						
					 | 
			
| [22] | 
					 SHI Xin, ZHAO Shuyi, and CHEN Zongwei. Research on key technologies and equipment composition of airborne equipment in automatic identification system[C]. Tenth International Conference on Mechanical Engineering, Materials, and Automation Technology (MMEAT 2024), Wuhan, China, 2024: 132614E. doi:  10.1117/12.3046617. 
						
					 | 
			
| [23] | 
					 刘东, 武裕鑫, 孙树政. 基于不同海浪谱船舶极限海况运动统计特征值预报分析[J]. 舰船科学技术, 2024, 46(9): 60–65. doi:  10.3404/j.issn.1672-7649.2024.09.010. 
					LIU Dong, WU Yuxin, and SUN Shuzheng. Prediction analysis of statistical eigenvalues of ship motion based on different wave spectra under rough sea conditions[J]. Ship Science and Technology, 2024, 46(9): 60–65. doi:  10.3404/j.issn.1672-7649.2024.09.010. 
						
					 | 
			
| [24] | 
					 魏仪文, 郭立新, 殷红成. 海洋内波对海面电磁散射特性的影响分析[J]. 雷达学报, 2015, 4(3): 326–333. doi:  10.12000/JR15060. 
					WEI Yiwen, GUO Lixin, and YIN Hongcheng. Analysis of the scattering characteristics of sea surface with the influence from internal wave[J]. Journal of Radars, 2015, 4(3): 326–333. doi:  10.12000/JR15060. 
						
					 | 
			
| [25] | 
					 王雪松. 雷达极化技术研究现状与展望[J]. 雷达学报, 2016, 5(2): 119–131. doi:  10.12000/JR16039. 
					WANG Xuesong. Status and prospects of radar polarimetry techniques[J]. Journal of Radars, 2016, 5(2): 119–131. doi:  10.12000/JR16039. 
						
					 | 
			
| [26] | 
					 韩静雯, 杨勇, 连静, 等. 基于极化与距离像特征融合的雷达导引头角反射器鉴别方法[J]. 系统工程与电子技术, 2024, 46(11): 3658–3670. doi:  10.12305/j.issn.1001-506X.2024.11.08. 
					HAN Jingwen, YANG Yong, LIAN Jing, et al. Identification method of corner reflector based on polarization and HRRP feature fusion for radar seeker[J]. Systems Engineering and Electronics, 2024, 46(11): 3658–3670. doi:  10.12305/j.issn.1001-506X.2024.11.08. 
						
					 | 
			
| [27] | 
					 CHEN Zhongbiao, HE Yijun, and YANG Wankang. Study of ocean waves measured by collocated HH and VV polarized X-band marine radars[J]. International Journal of Antennas and Propagation, 2016, 2016(1): 8257930. doi:  10.1155/2016/8257930. 
						
					 | 
			
| [28] | 
					 YANG Shiman, CAO Zheng, LIU Ningbo, et al. Maritime electro-optical image object matching based on improved YOLOv9[J]. Electronics, 2024, 13(14): 2774. doi:  10.3390/electronics13142774. 
						
					 | 
			
| [29] | 
					 田凯祥, 于晓涵, 王中训, 等. 基于实测数据的海杂波与海面小目标特征分析[J]. 海军航空大学学报, 2023, 38(4): 313–322. doi:  10.7682/j.issn.2097-1427.2023.04.002. 
					TIAN Kaixiang, YU Xiaohan, WANG Zhongxun, et al. Analysis of sea clutter and small target characteristics based on measured data[J]. Journal of Naval Aviation University, 2023, 38(4): 313–322. doi:  10.7682/j.issn.2097-1427.2023.04.002. 
						
					 | 
			
| [30] | 
					 丁昊, 朱晨光, 刘宁波, 等. 高海况条件下海面漂浮小目标特征提取与分析[J]. 海军航空大学学报, 2023, 38(4): 301–312. doi:  10.7682/j.issn.2097-1427.2023.04.001. 
					DING Hao, ZHU Chenguang, LIU Ningbo, et al. Feature extraction and analysis of small floating targets in high sea conditions[J]. Journal of Naval Aviation University, 2023, 38(4): 301–312. doi:  10.7682/j.issn.2097-1427.2023.04.001. 
						
					 | 
			
| [31] | 
					 GAO Fei, KONG Lingzhe, LANG Rongling, et al. SAR target incremental recognition based on features with strong separability[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5202813. doi:  10.1109/TGRS.2024.3351636. 
						
					 | 
			
| [32] | 
					 KONG Lingzhe, GAO Fei, HE Xiaoyu, et al. Few-shot class-incremental SAR target recognition via orthogonal distributed features[J]. IEEE Transactions on Aerospace and Electronic Systems, 2025, 61(1): 325–341. doi:  10.1109/TAES.2024.3443014. 
						
					 |