Volume 14 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
CHEN Guangyi, ZHANG Ruoyu, REN Hong, et al. Beamforming design for dual-functional radar-communication systems with holographic metasurface antennas[J]. Journal of Radars, 2025, 14(4): 961–973. doi: 10.12000/JR24246
Citation: CHEN Guangyi, ZHANG Ruoyu, REN Hong, et al. Beamforming design for dual-functional radar-communication systems with holographic metasurface antennas[J]. Journal of Radars, 2025, 14(4): 961–973. doi: 10.12000/JR24246

Beamforming Design for Dual-functional Radar-communication Systems with Holographic Metasurface Antennas

DOI: 10.12000/JR24246 CSTR: 32380.14.JR24246
Funds:  The National Natural Science Foundation of China (62201266, 62301254), The National Natural Science Foundation of Jiangsu Province (BK20210335, BK20230916)
More Information
  • Corresponding author: ZHANG Ruoyu, ryzhang19@njust.edu.cn
  • Received Date: 2024-12-11
  • Rev Recd Date: 2025-04-10
  • Available Online: 2025-04-17
  • Publish Date: 2025-05-06
  • The widespread application of wireless communication devices in emerging scenarios (e.g., Vehicle-to-Everything, Low Earth Orbit Satellites) has gradually pushed communication frequencies toward higher bands, resulting in an increasingly prominent overlap with radar frequency bands. A Dual-Functional Radar-Communication (DFRC) system, with its joint signal processing capabilities and low-power characteristics, is regarded as effective in alleviating spectrum congestion. Unlike traditional antenna array architectures, Holographic Metasurface Antennas (HMAs) embed closely arranged metamaterial units, enabling the flexible configuration of each unit’s state to regulate frequency responses. This facilitates controllable and energy-efficient beamforming, offering potential for application in DFRC systems. Considering an HMA-based DFRC system that performs target sensing in a cluttered environment while providing communication services to multiple single-antenna users, this paper formulates an optimization problem to maximize the weighted sum of communication spectral efficiency and radar mutual information, subject to constraints on the transmission power and HMA frequency response. It jointly optimizes the involved digital precoder, HMA weight matrix, and receive filter to realize an HMA-based DFRC beamforming design. To tackle this nonconvex optimization challenge, we propose an alternating optimization algorithm based on fractional programming. This algorithm first employs fractional programming techniques to transform the original problem into more manageable subproblems, which are then alternately solved using methods such as Lagrangian dual decomposition and manifold optimization. Simulation results show that the beamforming design with the HMA array architecture achieves a flexible tradeoff between communication spectral efficiency and radar mutual information performance, approaching the performance of a fully digital array architecture.

     

  • loading
  • [1]
    刘凡, 袁伟杰, 原进宏, 等. 雷达通信频谱共享及一体化: 综述与展望[J]. 雷达学报, 2021, 10(3): 467–484. doi: 10.12000/JR20113.

    LIU Fan, YUAN Weijie, YUAN Jinhong, et al. Radar-communication spectrum sharing and integration: Overview and prospect[J]. Journal of Radars, 2021, 10(3): 467–484. doi: 10.12000/JR20113.
    [2]
    张若愚, 袁伟杰, 崔原豪, 等. 面向6G的大规模MIMO通信感知一体化: 现状与展望[J]. 移动通信, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.

    ZHANG Ruoyu, YUAN Weijie, CUI Yuanhao, et al. Integrated sensing and communications with massive MIMO for 6G: Status and prospect[J]. Mobile Communications, 2022, 46(6): 17–23. doi: 10.3969/j.issn.1006-1010.2022.06.003.
    [3]
    ZHOU Wenxing, ZHANG Ruoyu, CHEN Guangyi, et al. Integrated sensing and communication waveform design: A survey[J]. IEEE Open Journal of the Communications Society, 2022, 3: 1930–1949. doi: 10.1109/OJCOMS.2022.3215683.
    [4]
    ZHANG Ruoyu, CHENG Lei, WANG Shuai, et al. Integrated sensing and communication with massive MIMO: A unified tensor approach for channel and target parameter estimation[J]. IEEE Transactions on Wireless Communications, 2024, 23(8): 8571–8587. doi: 10.1109/TWC.2024.3351856.
    [5]
    LIU Xiang, HUANG Tianyao, and LIU Yimin. Transmit design for joint MIMO radar and multiuser communications with transmit covariance constraint[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1932–1950. doi: 10.1109/JSAC.2022.3155512.
    [6]
    CHEN Guangyi, ZHANG Ruoyu, REN Hong, et al. Hybrid beamforming design with overlapped subarrays for massive MIMO-ISAC systems[C]. 2023 IEEE Global Communications Conference, Kuala Lumpur, Malaysia, 2023: 528–533. doi: 10.1109/GLOBECOM54140.2023.10437590.
    [7]
    LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976.
    [8]
    CHEN Li, WANG Zhiqin, DU Ying, et al. Generalized transceiver beamforming for DFRC with MIMO radar and MU-MIMO communication[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1795–1808. doi: 10.1109/JSAC.2022.3155515.
    [9]
    ZHAO Zongyao, ZHANG Long, JIANG Rui, et al. Joint beamforming scheme for ISAC systems via Robust Cramér-Rao bound optimization[J]. IEEE Wireless Communications Letters, 2024, 13(3): 889–893. doi: 10.1109/LWC.2024.3349488.
    [10]
    LI Jin, ZHOU Gui, GONG Tantao, et al. A framework for mutual information-based MIMO integrated sensing and communication beamforming design[J]. IEEE Transactions on Vehicular Technology, 2024, 73(6): 8352–8366. doi: 10.1109/TVT.2024.3355899.
    [11]
    QI Chenhao, CI Wei, ZHANG Jinming, et al. Hybrid beamforming for millimeter wave MIMO integrated sensing and communications[J]. IEEE Communications Letters, 2022, 26(5): 1136–1140. doi: 10.1109/LCOMM.2022.3157751.
    [12]
    SHLEZINGER N, DICKER O, ELDAR Y C, et al. Dynamic metasurface antennas for uplink massive MIMO systems[J]. IEEE Transactions on Communications, 2019, 67(10): 6829–6843. doi: 10.1109/TCOMM.2019.2927213.
    [13]
    SMITH D R, YURDUSEVEN O, MANCERA L P, et al. Analysis of a waveguide-fed metasurface antenna[J]. Physical Review Applied, 2017, 8(5): 054048. doi: 10.1103/PhysRevApplied.8.054048.
    [14]
    SHLEZINGER N, ALEXANDROPOULOS G C, IMANI M F, et al. Dynamic metasurface antennas for 6G extreme massive MIMO communications[J]. IEEE Wireless Communications, 2021, 28(2): 106–113. doi: 10.1109/MWC.001.2000267.
    [15]
    KIMARYO S F and LEE K. Downlink beamforming for dynamic metasurface antennas[J]. IEEE Transactions on Wireless Communications, 2023, 22(7): 4745–4755. doi: 10.1109/TWC.2022.3228272.
    [16]
    CHEN Guangyi, ZHANG Ruoyu, ZHANG Haiyang, et al. Energy-efficient beamforming for downlink multi-user systems with dynamic metasurface antennas[J]. IEEE Communications Letters, 2025, 29(2): 284–288. doi: 10.1109/LCOMM.2024.3513554.
    [17]
    YOU Li, XIONG Jiayuan, NG D W K, et al. Energy efficiency and spectral efficiency tradeoff in RIS-aided multiuser MIMO uplink transmission[J]. IEEE Transactions on Signal Processing, 2021, 69: 1407–1421. doi: 10.1109/TSP.2020.3047474.
    [18]
    REZVANI M and ADVE R. Channel estimation for dynamic metasurface antennas[J]. IEEE Transactions on Wireless Communications, 2024, 23(6): 5832–5846. doi: 10.1109/TWC.2023.3328496.
    [19]
    HUANG Wei, ZHANG Haiyang, SHLEZINGER N, et al. Joint microstrip selection and beamforming design for mmWave systems with dynamic metasurface antennas[C]. 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Rhodes Island, Greece, 2023: 1–5. doi: 10.1109/ICASSP49357.2023.10096260.
    [20]
    YOU Li, XU Jie, ALEXANDROPOULOS G C, et al. Energy efficiency maximization of massive MIMO communications with dynamic metasurface antennas[J]. IEEE Transactions on Wireless Communications, 2023, 22(1): 393–407. doi: 10.1109/TWC.2022.3194070.
    [21]
    高克, 张海洋, 王保云. 基于动态超表面天线的雷达通信一体化设计[J]. 无线电通信技术, 2023, 49(5): 946–952. doi: 10.3969/j.issn.1003-3114.2023.05.021.

    GAO Ke, ZHANG Haiyang, and WANG Baoyun. Beamforming design for dual-functional radar-communication systems with dynamic metasurface antennas[J]. Radio Communications Technology, 2023, 49(5): 946–952. doi: 10.3969/j.issn.1003-3114.2023.05.021.
    [22]
    ZHANG Haiyang, SHLEZINGER N, GUIDI F, et al. Beam focusing for near-field multiuser MIMO communications[J]. IEEE Transactions on Wireless Communications, 2022, 21(9): 7476–7490. doi: 10.1109/TWC.2022.3158894.
    [23]
    LI Yihan, GONG Shiqi, LIU Heng, et al. Near-field beamforming optimization for holographic XL-MIMO multiuser systems[J]. IEEE Transactions on Communications, 2024, 72(4): 2309–2323. doi: 10.1109/TCOMM.2023.3338737.
    [24]
    WANG Bowen, LI Hongyu, and CHENG Ziyang. Dynamic hybrid beamforming design for dual-function radar-communication systems[J]. IEEE Transactions on Vehicular Technology, 2024, 73(2): 2842–2847. doi: 10.1109/TVT.2023.3312759.
    [25]
    吴文俊, 唐波, 汤俊, 等. 杂波环境中雷达通信一体化系统波形设计算法研究[J]. 雷达学报, 2022, 11(4): 570–580. doi: 10.12000/JR22105.

    WU Wenjun, TANG Bo, TANG Jun, et al. Waveform design for dual-function radar-communication systems in clutter[J]. Journal of Radars, 2022, 11(4): 570–580. doi: 10.12000/JR22105.
    [26]
    SHEN Kaiming and YU Wei. Fractional programming for communication systems-part I: Power control and beamforming[J]. IEEE Transactions on Signal Processing, 2018, 66(10): 2616–2630. doi: 10.1109/TSP.2018.2812733.
    [27]
    PONTRYAGIN L S. Smooth manifolds and their applications in homotopy theory[J]. American Mathematical Society Translations, Ser, 1976, 2: 1, 114.
    [28]
    BERTSEKAS D P. Nonlinear Programming[M]. 3rd ed. Belmont, USA: Athena Scientific, 2016: 120–125.
    [29]
    ABSIL P A, MAHONY R, and SEPULCHRE R. Optimization Algorithms on Matrix Manifolds[M]. Princeton: Princeton University Press, 2008: 105–106.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(505) PDF downloads(86) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint