Citation: | NIE Jiali, CUI Yuanhao, ZHANG Di, et al. Vehicle network beamforming method based on multimodal feature fusion[J]. Journal of Radars, 2025, 14(4): 994–1004. doi: 10.12000/JR24242 |
[1] |
王明哲. 5G移动通信发展趋势及关键技术研究[J]. 智慧中国, 2022(2): 68–69.
WANG Mingzhe. Research on the development trend and key technologies of 5G mobile communication[J]. Wisdom China, 2022(2): 68–69.
|
[2] |
CHEN Wanshi, LIN Xingqin, LEE J, et al. 5G-advanced toward 6G: Past, present, and future[J]. IEEE Journal on Selected Areas in Communications, 2023, 41(6): 1592–1619. doi: 10.1109/JSAC.2023.3274037.
|
[3] |
ZHANG Zhengquan, XIAO Yue, MA Zheng, et al. 6G wireless networks: Vision, requirements, architecture, and key technologies[J]. IEEE Vehicular Technology Magazine, 2019, 14(3): 28–41. doi: 10.1109/MVT.2019.2921208.
|
[4] |
LIU Fan, ZHENG Le, CUI Yuanhao, et al. Seventy years of radar and communications: The road from separation to integration[J]. IEEE Signal Processing Magazine, 2023, 40(5): 106–121. doi: 10.1109/MSP.2023.3272881.
|
[5] |
NIE Jiali, CUI Yuanhao, YANG Zhaohui, et al. Near-field beam training for extremely large-scale MIMO based on deep learning[J]. IEEE Transactions on Mobile Computing, 2025, 24(1): 352–362. doi: 10.1109/TMC.2024.3462960.
|
[6] |
WEI Xiuhong, DAI Linglong, ZHAO Yajun, et al. Codebook design and beam training for extremely large-scale RIS: Far-field or near-field[J]. China Communications, 2022, 19(6): 193–204. doi: 10.23919/JCC.2022.06.015.
|
[7] |
NOH S, ZOLTOWSKI M D, and LOVE D J. Multi-resolution codebook and adaptive beamforming sequence design for millimeter wave beam alignment[J]. IEEE Transactions on Wireless Communications, 2017, 16(9): 5689–5701. doi: 10.1109/TWC.2017.2713357.
|
[8] |
ABDELREHEEM A, MOHAMED E M, and ESMAIEL H. Location-based millimeter wave multi-level beamforming using compressive sensing[J]. IEEE Communications Letters, 2018, 22(1): 185–188. doi: 10.1109/LCOMM.2017.2766629.
|
[9] |
CUI Yuanhao, LIU Fan, JING Xiaojun, et al. Integrating sensing and communications for ubiquitous IoT: Applications, trends, and challenges[J]. IEEE Network, 2021, 35(5): 158–167. doi: 10.1109/MNET.010.2100152.
|
[10] |
LU Shihang, LIU Fan, LI Yunxin, et al. Integrated sensing and communications: Recent advances and ten open challenges[J]. IEEE Internet of Things Journal, 2024, 11(11): 19094–19120. doi: 10.1109/JIOT.2024.3361173.
|
[11] |
CUI Yuanhao, CAO Xiaowen, ZHU Guangxu, et al. Edge perception: Intelligent wireless sensing at network edge[J]. IEEE Communications Magazine, 2025, 63(3): 166–173. doi: 10.1109/MCOM.001.2300660.
|
[12] |
LIU Fan, MASOUROS C, LI Ang, et al. MU-MIMO communications with MIMO radar: From co-existence to joint transmission[J]. IEEE Transactions on Wireless Communications, 2018, 17(4): 2755–2770. doi: 10.1109/TWC.2018.2803045.
|
[13] |
LIU Fan, YUAN Weijie, MASOUROS C, et al. Radar-assisted predictive beamforming for vehicular links: Communication served by sensing[J]. IEEE Transactions on Wireless Communications, 2020, 19(11): 7704–7719. doi: 10.1109/TWC.2020.3015735.
|
[14] |
NIE Jiali, ZHOU Quan, MU Junsheng, et al. Vision and radar multimodal aided beam prediction: Facilitating metaverse development[C]. The 2nd Workshop on Integrated Sensing and Communications for Metaverse, Helsinki, Finland, 13–18. doi: 10.1145/3597065.3597449.
|
[15] |
LIU Fan, CUI Yuanhao, MASOUROS C, et al. Integrated sensing and communications: Toward dual-functional wireless networks for 6G and beyond[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1728–1767. doi: 10.1109/JSAC.2022.3156632.
|
[16] |
VA V, CHOI J, SHIMIZU T, et al. Inverse multipath fingerprinting for millimeter wave V2I beam alignment[J]. IEEE Transactions on Vehicular Technology, 2018, 67(5): 4042–4058. doi: 10.1109/TVT.2017.2787627.
|
[17] |
XU Weihua, GAO Feifei, JIN Shi, et al. 3D scene-based beam selection for mmWave communications[J]. IEEE Wireless Communications Letters, 2020, 9(11): 1850–1854. doi: 10.1109/LWC.2020.3005983.
|
[18] |
YING Ziqiang, YANG Haojun, GAO Jia, et al. A new vision-aided beam prediction scheme for mmWave wireless communications[C]. The 2020 IEEE 6th International Conference on Computer and Communications, Chengdu, China, 2020: 232–237. doi: 10.1109/ICCC51575.2020.9344988.
|
[19] |
SHEN L H, CHANG Tingwei, FENG K T, et al. Design and implementation for deep learning based adjustable beamforming training for millimeter wave communication systems[J]. IEEE Transactions on Vehicular Technology, 2021, 70(3): 2413–2427. doi: 10.1109/TVT.2021.3058715.
|
[20] |
NIE Jiali, CUI Yuanhao, YU Tiankuo, et al. An efficient nocturnal scenarios beamforming based on multi-modal enhanced by object detection[C]. 2023 IEEE Globecom Workshops, Kuala Lumpur, Malaysia, 2023: 515–520. doi: 10.1109/GCWkshps58843.2023.10464587.
|
[21] |
SHI Binpu, LI Min, ZHAO Mingmin, et al. Multimodal deep learning empowered millimeter-wave beam prediction[C]. The 2024 IEEE 99th Vehicular Technology Conference, Singapore, Singapore, 2024: 1–6, doi: 10.1109/VTC2024-Spring62846.2024.10683225.
|
[22] |
GU J, SALEHI B, ROY D, et al. Multimodality in mmWave MIMO beam selection using deep learning: Datasets and challenges[J]. IEEE Communications Magazine, 2022, 60(11): 36–41. doi: 10.1109/MCOM.002.2200028.
|
[23] |
CHARAN G, OSMAN T, HREDZAK A, et al. Vision-position multi-modal beam prediction using real millimeter wave datasets[C]. 2022 IEEE Wireless Communications and Networking Conference, Austin, TX, USA, 2022: 2727–2731. doi: 10.1109/WCNC51071.2022.9771835.
|
[24] |
CUI Yuanhao, NIE Jiali, CAO Xiaowen, et al. Sensing-assisted high reliable communication: A transformer-based beamforming approach[J]. IEEE Journal of Selected Topics in Signal Processing, 2024, 18(5): 782–795. doi: 10.1109/JSTSP.2024.3405859.
|
[25] |
ALKHATEEB A, CHARAN G, OSMAN T, et al. DeepSense 6G: A large-scale real-world multi-modal sensing and communication dataset[J]. IEEE Communications Magazine, 2023, 61(9): 122–128. doi: 10.1109/MCOM.006.2200730.
|
[26] |
DEMIRHAN U and ALKHATEEB A. Radar aided 6G beam prediction: Deep learning algorithms and real-world demonstration[C]. 2022 IEEE Wireless Communications and Networking Conference, Austin, TX, USA, 2022: 2655–2660. doi: 10.1109/WCNC51071.2022.9771564.
|
[27] |
ZHOU Bo, XIE Jiapeng, PAN Yan, et al. MotionBEV: Attention-aware online LiDAR moving object segmentation with bird’s eye view based appearance and motion features[J]. IEEE Robotics and Automation Letters, 2023, 8(12): 8074–8081. doi: 10.1109/LRA.2023.3325687.
|
[28] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[29] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]. The 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 2017: 6000–6010.
|
[30] |
HAN Dongchen, PAN Xuran, HAN Yizeng, et al. FLatten transformer: Vision transformer using focused linear attention[C]. 2023 IEEE/CVF International Conference on Computer Vision, Paris, France, 2023: 5938–5948. doi: 10.1109/ICCV51070.2023.00548.
|