Volume 14 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
LIU Yu, ZHANG Junhao, YAO Xue, et al. Dual function radar and communication waveform design based on sub-pulse hybrid modulation[J]. Journal of Radars, 2025, 14(4): 896–914. doi: 10.12000/JR24241
Citation: LIU Yu, ZHANG Junhao, YAO Xue, et al. Dual function radar and communication waveform design based on sub-pulse hybrid modulation[J]. Journal of Radars, 2025, 14(4): 896–914. doi: 10.12000/JR24241

Dual Function Radar and Communication Waveform Design Based on Sub-pulse Hybrid Modulation

DOI: 10.12000/JR24241 CSTR: 32380.14.JR24241
Funds:  The National Natural Science Foundation of China (62271126), the Natural Science Foundation Project of Chongqing (CSTB2022NSCQ-MSX1156) and the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202201202)
More Information
  • Corresponding author: YAO Xue, yaoxue_2016@163.com
  • Received Date: 2024-12-03
  • Rev Recd Date: 2025-05-29
  • Available Online: 2025-06-17
  • Publish Date: 2025-07-01
  • To address the low data rate issue in the design of Dual-Function Radar-Communication (DFRC) waveforms with radar detection as the primary function, this paper proposes an information modulation method for multiple sub-pulse structure waveforms called Sub-pulse Hybrid Modulation (SHM). The proposed SHM method utilizes time-, spectral-, and polarization-domain features from inter-subpulse and intra-subpulse sources to convey information. The DFRC waveform design problem is formulated based on minimizing cross- and auto-correlation Peak Sidelobe Levels (PSL), while considering constant envelope and SHM constraints. To tackle the resulting nonconvex and nondeterministic polynomial-hard optimization problem, the Spectral Majorization Minimization (SMM) algorithm is employed to monotonically decrease the objective function value. Furthermore, this paper explores an echo processing method that makes the Doppler frequency at the first zero point of the zero-delay intercept of the fuzzy function $ L - 1 $ times higher than that of the conventional waveform, where L is the number of sub-pulses. This enhancement ensures high Doppler tolerance for the DFRC waveform and enables effective detection of high-speed targets.

     

  • loading
  • [1]
    LIU Fan, MASOUROS C, PETROPULU A P, et al. Joint radar and communication design: Applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68(6): 3834–3862. doi: 10.1109/TCOMM.2020.2973976.
    [2]
    HASSANIEN A, AMIN M G, ABOUTANIOS E, et al. Dual-function radar communication systems: A solution to the spectrum congestion problem[J]. IEEE Signal Processing Magazine, 2019, 36(5): 115–126. doi: 10.1109/MSP.2019.2900571.
    [3]
    刘永军, 廖桂生, 李海川, 等. 电磁空间分布式一体化波形设计与信息获取[J]. 中国科学基金, 2021, 35(5): 701–707. doi: 10.16262/j.cnki.1000-8217.2021.05.005.

    LIU Yongjun, LIAO Guisheng, LI Haichuan, et al. Distributed integrated waveform design and information acquisition in electromagnetic space[J]. Bulletin of National Natural Science Foundation of China, 2021, 35(5): 701–707. doi: 10.16262/j.cnki.1000-8217.2021.05.005.
    [4]
    WU Kai, ZHANG J A, HUANG Xiaojing, et al. Reliable frequency-hopping MIMO radar-based communications with multi-antenna receiver[J]. IEEE Transactions on Communications, 2021, 69(8): 5502–5513. doi: 10.1109/TCOMM.2021.3079270.
    [5]
    TSINOS C G, ARORA A, CHATZINOTAS S, et al. Joint transmit waveform and receive filter design for dual-function radar-communication systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2021, 15(6): 1378–1392. doi: 10.1109/JSTSP.2021.3112295.
    [6]
    LIU Rang, LI Ming, LIU Qian, et al. Joint waveform and filter designs for STAP-SLP-based MIMO-DFRC systems[J]. IEEE Journal on Selected Areas in Communications, 2022, 40(6): 1918–1931. doi: 10.1109/JSAC.2022.3155501.
    [7]
    HASSANIEN A, AMIN M G, ZHANG Y D, et al. Dual-function radar-communications: Information embedding using sidelobe control and waveform diversity[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2168–2181. doi: 10.1109/TSP.2015.2505667.
    [8]
    YU Xianxiang, YAO Xue, YANG Jing, et al. Integrated waveform design for MIMO radar and communication via spatio-spectral modulation[J]. IEEE Transactions on Signal Processing, 2022, 70: 2293–2305. doi: 10.1109/TSP.2022.3170687.
    [9]
    TANG Bo and STOICA P. MIMO multifunction RF systems: Detection performance and waveform design[J]. IEEE Transactions on Signal Processing, 2022, 70: 4381–4394. doi: 10.1109/TSP.2022.3202315.
    [10]
    BAXTER W, ABOUTANIOS E, and HASSANIEN A. Joint radar and communications for frequency-hopped MIMO systems[J]. IEEE Transactions on Signal Processing, 2022, 70: 729–742. doi: 10.1109/TSP.2022.3142909.
    [11]
    HUANG Tianyao, SHLEZINGER N, XU Xingyu, et al. MAJoRCom: A dual-function radar communication system using index modulation[J]. IEEE Transactions on Signal Processing, 2020, 68: 3423–3438. doi: 10.1109/TSP.2020.2994394.
    [12]
    XU Jing, WANG Xiangrong, ABOUTANIOS E, et al. Hybrid index modulation for dual-functional radar communications systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72(3): 3186–3200. doi: 10.1109/TVT.2022.3219888.
    [13]
    YAO Xue, YANG Jing, XIONG Kui, et al. Integrated signal design for MIMO DFRC with intrapulse index modulation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(2): 1490–1504. doi: 10.1109/TAES.2023.3339118.
    [14]
    刘志鹏. 雷达通信一体化波形研究[D]. [博士论文], 北京理工大学, 2015.

    LIU Zhipeng. Waveform research on integration of radar and communication[D]. [Ph.D. dissertation], Beijing University of Technology, 2015.
    [15]
    SAHIN C, JAKABOSKY J, MCCORMICK P M, et al. A novel approach for embedding communication symbols into physical radar waveforms[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1498–1503. doi: 10.1109/RADAR.2017.7944444.
    [16]
    CUI Guolong, YANG Jing, LU Shuping, et al. Dual-use unimodular sequence design via frequency nulling modulation[J]. IEEE Access, 2018, 6: 62470–62481. doi: 10.1109/ACCESS.2018.2876644.
    [17]
    YANG Jing, CUI Guolong, YU Xianxiang, et al. Dual-use signal design for radar and communication via ambiguity function sidelobe control[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9781–9794. doi: 10.1109/TVT.2020.3002773.
    [18]
    YAO Xue, LIU Yu, QIU H, et al. Dual-use baseband signal design for radCom with position index and phase modulation[J]. Signal Processing, 2023, 209: 109015. doi: 10.1016/j.sigpro.2023.109015.
    [19]
    YANG Jing, TAN Youshan, YU Xianxiang, et al. Waveform design for watermark framework based DFRC system with application on joint SAR imaging and communication[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5200214. doi: 10.1109/TGRS.2022.3232528.
    [20]
    GUO Caili, LIU Fangfang, CHEN Shuo, et al. Advances on exploiting polarization in wireless communications: Channels, technologies, and applications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 125–166. doi: 10.1109/COMST.2016.2606639.
    [21]
    HU Yaoyue, PAN Zhiwen, LIU Xiaobei, et al. Sliding window soft-SCL decoders for asynchronous polar-coded modulation[J]. IEEE Communications Letters, 2023, 27(1): 60–64. doi: 10.1109/LCOMM.2022.3213854.
    [22]
    ZHANG Bo, LIU Wei, and LAN Xiang. Directional modulation design based on crossed-dipole arrays for two signals with orthogonal polarizations[C]. 12th European Conference on Antennas and Propagation, London, UK, 2018: 1–5. doi: 10.1049/cp.2018.0428.
    [23]
    ZHANG Qiaoyu, YANG Zhaoyang, WANG Wen, et al. A dual-polarized antennas based directional modulation scheme[C]. 26th International Conference on Telecommunications, Hanoi, Vietnam, 2019: 468–473. doi: 10.1109/ICT.2019.8798807.
    [24]
    倪吉华. 基于虚拟极化的目标增强与杂波抑制技术研究[D]. [硕士论文], 电子科技大学, 2006. doi: 10.7666/d.Y915593.

    NI Jihua. Research on target enhancement and clutter suppression techniques based on virtual polarization[D]. [Master dissertation], University of Electronic Science and Technology of China, 2006. doi: 10.7666/d.Y915593.
    [25]
    ZHAO Licheng, SONG Junxiao, BABU P, et al. A unified framework for low autocorrelation sequence design via majorization-minimization[J]. IEEE Transactions on Signal Processing, 2017, 65(2): 438–453. doi: 10.1109/TSP.2016.2620113.
    [26]
    SONG Junxiao, BABU P, and PALOMAR D P. Sequence design to minimize the weighted integrated and peak sidelobe levels[J]. IEEE Transactions on Signal Processing, 2016, 64(8): 2051–2064. doi: 10.1109/TSP.2015.2510982.
    [27]
    FAN Wen, LIANG Junli, CHEN Zihao, et al. Spectrally compatible aperiodic sequence set design with low cross- and auto-correlation PSL[J]. Signal Processing, 2021, 183: 107960. doi: 10.1016/j.sigpro.2020.107960.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(140) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint