Citation: | LI Hua, LIU Kaiyu, DENG Yunkai, et al. Information metasurface technology-enabled integrated passive wireless communication system based on synthetic aperture radar[J]. Journal of Radars, 2025, 14(4): 928–949. doi: 10.12000/JR24228 |
[1] |
ULABY F T and LONG D D. Microwave Radar and Radiometric Remote Sensing[M]. Ann Arbor, USA: University of Michigan Press, 2014: 65–72.
|
[2] |
VILLANO M, KRIEGER G, JÄGER M, et al. Staggered SAR: Performance analysis and experiments with real data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6617–6638. doi: 10.1109/TGRS.2017.2731047.
|
[3] |
CAI Yonghua, LI Junfeng, YANG Qingyue, et al. First demonstration of RFI mitigation in the phase synchronization of LT-1 bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5217319. doi: 10.1109/TGRS.2023.3310613.
|
[4] |
JIN Guodong, LIU Kaiyu, LIU Dacheng, et al. An advanced phase synchronization scheme for LT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1735–1746. doi: 10.1109/TGRS.2019.2948219.
|
[5] |
李涛, 唐新明, 李世金, 等. L波段差分干涉SAR卫星基础形变产品分类[J]. 测绘学报, 2023, 52(5): 769–779. doi: 10.11947/j.AGCS.2023.20220050.
LI Tao, TANG Xinming, LI Shijin, et al. Classification of basic deformation products of L-band differential interfero-metric SAR satellite[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 769–779. doi: 10.11947/j.AGCS.2023.20220050.
|
[6] |
HUBER S, DE ALMEIDA F Q, VILLANO M, et al. Tandem-L: A technical perspective on future spaceborne SAR sensors for earth observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4792–4807. doi: 10.1109/TGRS.2018.2837673.
|
[7] |
CHIRIYATH A R, PAUL B, and BLISS D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1–12. doi: 10.1109/TCCN.2017.2666266.
|
[8] |
SADDIK G N, SINGH R S, and BROWN E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431–1437. doi: 10.1109/TMTT.2007.900343.
|
[9] |
HAN Liang and WU Ke. Joint wireless communication and radar sensing systems—State of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885. doi: 10.1049/iet-map.2012.0450.
|
[10] |
YOUNIS M, FISCHER C, and WIESBECK W. Digital beamforming in SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1735–1739. doi: 10.1109/TGRS.2003.815662.
|
[11] |
CURRIE A and BROWN M A. Wide-swath SAR[J]. IEE Proceedings F (Radar and Signal Processing), 1992, 139(2): 122–135. doi: 10.1049/ip-f-2.1992.0016.
|
[12] |
STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
|
[13] |
JACYNA G M, FELL B, and MCLEMORE D. A high-level overview of fundamental limits studies for the DARPA SSPARC program[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 3558–3561. doi: 10.1109/RADAR.2016.7485100.
|
[14] |
CHIRIYATH A R, PAUL B, and BLISS D W. Joint radar-communications information bounds with clutter: The phase noise menace[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 2256–2260. doi: 10.1109/RADAR.2016.7485311.
|
[15] |
RICHMOND C D, BASU P, LEARNED R E, et al. Performance bounds on cooperative radar and communication systems operation[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1887–1891. doi: 10.1109/RADAR.2016.7485101.
|
[16] |
KIM J H, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. doi: 10.1109/TGRS.2014.2360148.
|
[17] |
WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of joint wireless communication and high-resolution SAR imaging using airborne MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6619–6632. doi: 10.1109/TGRS.2019.2907561.
|
[18] |
PENDRY J B, SCHURIG D, and SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780–1782. doi: 10.1126/science.1125907.
|
[19] |
WEI Menglin, ZHAO Hanting, GALDI V, et al. Metasurface-enabled smart wireless attacks at the physical layer[J]. Nature Electronics, 2023, 6(8): 610–618. doi: 10.1038/s41928-023-01011-0.
|
[20] |
ENGHETA N and ZIOLKOWSKI R W. Metamaterials: Physics and Engineering Explorations[M]. Hoboken, USA: Wiley, 2006: 155–173.
|
[21] |
LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9.
|
[22] |
WANG Xin, HAN Jiaqi, LI Guanxuan, et al. High-performance costefficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface[J]. Nature Communications, 2023, 14(1): 6002. doi: 10.1038/s41467-023-41763-z.
|
[23] |
YANG Bo, CHEN Xiaojie, CHU Jie, et al. A 5.8-GHz phased array system using power-variable phase-controlled magnetrons for wireless power transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(11): 4951–4959. doi: 10.1109/TMTT.2020.3007187.
|
[24] |
ALALI B, ZELENCHUK D, and FUSCO V. A 2D reflective metasurface augmented Luneburg lens antenna for 5G communications[C]. 2022 International Workshop on Antenna Technology, Dublin, Ireland, 2022: 136–138. doi: 10.1109/iWAT54881.2022.9811041.
|
[25] |
LIANG Qiuyan and LAU B K. Beam reconfigurable reflective metasurface for indoor wireless communications[C]. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Singapore, Singapore, 2021: 4358–4359. doi: 10.1109/APS/URSI47566.2021.9703707.
|
[26] |
ZHANG Lei, CHEN Xiaoqing, CHENG Qiang, et al. Space-time-coding digital metasurfaces for new-architecture wireless communications[C]. 2022 16th European Conference on Antennas and Propagation, Madrid, Spain, 2022: 684–688. doi: 10.23919/EuCAP53622.2022.9769603.
|
[27] |
CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005.
|
[28] |
WATTS S. Modeling and simulation of coherent sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3303–3317. doi: 10.1109/TAES.2012.6324707.
|
[29] |
WANG Jie, LIANG Xingdong, CHEN Longyong, et al. Joint wireless communication and high resolution SAR imaging using airborne mimo radar system[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2511–2514. doi: 10.1109/IGARSS.2019.8897826.
|
[30] |
PROAKIS J G and SALEHI M. Digital Communications[M]. 5th ed. New York: McGraw-Hill, 2007: 273–301.
|
[31] |
GOLDSMITH A. Wireless Communications[M]. Cambridge: Cambridge University Press, 2005: 157–166.
|
[32] |
RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2014: 314–333.
|
[33] |
TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887.
|
[34] |
DAI Junyan, TANG Wankai, CHEN Mingzheng, et al. Wireless communication based on information metasurfaces[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(3): 1493–1510. doi: 10.1109/TMTT.2021.3054662.
|
[35] |
丁昊, 朱晨光, 刘宁波, 等. 高海况条件下海面漂浮小目标特征提取与分析[J]. 海军航空大学学报, 2023, 38(4): 301–312. doi: 10.7682/j.issn.2097-1427.2023.04.001.
DING Hao, ZHU Chenguang, LIU Ningbo, et al. Feature extraction and analysis of small floating targets in high sea conditions[J]. Journal of Naval Aviation University, 2023, 38(4): 301–312. doi: 10.7682/j.issn.2097-1427.2023.04.001.
|
[36] |
BROSCHAT S L. Reflection loss from a “Pierson-Moskowitz” sea surface using the nonlocal small slope approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 632–634. doi: 10.1109/36.739134.
|
[37] |
SHI Shuo, ZHANG Heng, DENG Yunkai, et al. Increase the coherent processing interval for SAR focusing of maneuvering ships by data resampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5210322. doi: 10.1109/TGRS.2024.3390790.
|
[38] |
WANG Peng, LI Zhenning, WEI Zhaohui, et al. Space-time-coding digital metasurface element design based on state recognition and mapping methods with CNN-LSTM-DNN[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(6): 4962–4975. doi: 10.1109/TAP.2024.3349778.
|
[39] |
WANG Di, YIN Lizheng, HUANG Tiejun, et al. Design of a 1 bit broadband space-time-coding digital metasurface element[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 611–615. doi: 10.1109/LAWP.2020.2973424.
|
[40] |
CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995: 217–219.
|
[41] |
ROSENBERG L, OUELLETTE J D, and DOWGIALLO D J. Passive bistatic sea clutter statistics from spaceborne illuminators[J]. IEEE Transactions on Aerospace and Electronic Systems, 56(5): 3971–3984.
|
[42] |
ARMSTRONG B C and GRIFFITHS H D. CFAR detection of fluctuating targets in spatially correlated K-distributed clutter[J]. IEE Proceedings F (Radar and Signal Processing), 1991, 138(2): 139–152. doi: 10.1049/ip-f-2.1991.0020.
|
[43] |
TULINO A M and VERDÚ S. Random matrix theory and wireless communications[J]. Foundations and Trends® in Communications and Information Theory, 2004, 1(1): 1–182. doi: 10.1561/0100000001.
|