Volume 14 Issue 4
Aug.  2025
Turn off MathJax
Article Contents
LI Hua, LIU Kaiyu, DENG Yunkai, et al. Information metasurface technology-enabled integrated passive wireless communication system based on synthetic aperture radar[J]. Journal of Radars, 2025, 14(4): 928–949. doi: 10.12000/JR24228
Citation: LI Hua, LIU Kaiyu, DENG Yunkai, et al. Information metasurface technology-enabled integrated passive wireless communication system based on synthetic aperture radar[J]. Journal of Radars, 2025, 14(4): 928–949. doi: 10.12000/JR24228

Information Metasurface Technology-enabled Integrated Passive Wireless Communication System Based on Synthetic Aperture Radar

DOI: 10.12000/JR24228 CSTR: 32380.14.JR24228
Funds:  The Aerospace Information Research Institute, Chinese Academy of Sciences Project (E1H31603)
More Information
  • Corresponding author: LIU Kaiyu, liuky@aircas.ac.cn
  • Received Date: 2024-11-19
  • Rev Recd Date: 2025-05-08
  • Available Online: 2025-05-30
  • Publish Date: 2025-06-23
  • The integration technology of satellite communications and spaceborne Synthetic Aperture Radar (SAR) remote sensing aims to combine communication and remote sensing functionalities, enabling simultaneous data transmission and remote sensing imaging to meet the demands of efficient, covert, and secure information transfer, enhancing system multifunctionality. However, due to significant differences between the waveform characteristics, transceiver design, and signal processing algorithms of the technologies, integrating communication and remote sensing in spaceborne systems presents numerous challenges. This study proposes a passive wireless communication system based on information metasurface technology, combined with SAR echo modulation methods, to innovatively achieve the deep integration of ground-to-space communication and spaceborne SAR remote sensing. The system precisely modulates the scattering parameters of SAR echoes to enable passive wireless communication without affecting the quality of SAR imaging. Additionally, by leveraging electromagnetic backscatter properties instead of active transmission mechanisms, the system effectively ensures the electromagnetic concealment and information security of the communication link. A series of scene simulation experiments and spaceborne SAR data experiments were performed, which validated the system’s feasibility and effectiveness. Results indicate that while maintaining compatibility with traditional SAR waveform structures, the proposed system successfully achieved the synchronous operation of ground-to-space data transmission and spaceborne SAR imaging. The core objective of this research was to promote the deep integration of spaceborne SAR remote sensing systems and wireless communication technologies, aiming for the efficient utilization of spectrum resources and exploring the application of information metasurface technology in integration of communication and remote sensing systems, providing new research perspectives and technological potential in this field.

     

  • loading
  • [1]
    ULABY F T and LONG D D. Microwave Radar and Radiometric Remote Sensing[M]. Ann Arbor, USA: University of Michigan Press, 2014: 65–72.
    [2]
    VILLANO M, KRIEGER G, JÄGER M, et al. Staggered SAR: Performance analysis and experiments with real data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(11): 6617–6638. doi: 10.1109/TGRS.2017.2731047.
    [3]
    CAI Yonghua, LI Junfeng, YANG Qingyue, et al. First demonstration of RFI mitigation in the phase synchronization of LT-1 bistatic SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5217319. doi: 10.1109/TGRS.2023.3310613.
    [4]
    JIN Guodong, LIU Kaiyu, LIU Dacheng, et al. An advanced phase synchronization scheme for LT-1[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3): 1735–1746. doi: 10.1109/TGRS.2019.2948219.
    [5]
    李涛, 唐新明, 李世金, 等. L波段差分干涉SAR卫星基础形变产品分类[J]. 测绘学报, 2023, 52(5): 769–779. doi: 10.11947/j.AGCS.2023.20220050.

    LI Tao, TANG Xinming, LI Shijin, et al. Classification of basic deformation products of L-band differential interfero-metric SAR satellite[J]. Acta Geodaetica et Cartographica Sinica, 2023, 52(5): 769–779. doi: 10.11947/j.AGCS.2023.20220050.
    [6]
    HUBER S, DE ALMEIDA F Q, VILLANO M, et al. Tandem-L: A technical perspective on future spaceborne SAR sensors for earth observation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(8): 4792–4807. doi: 10.1109/TGRS.2018.2837673.
    [7]
    CHIRIYATH A R, PAUL B, and BLISS D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1–12. doi: 10.1109/TCCN.2017.2666266.
    [8]
    SADDIK G N, SINGH R S, and BROWN E R. Ultra-wideband multifunctional communications/radar system[J]. IEEE Transactions on Microwave Theory and Techniques, 2007, 55(7): 1431–1437. doi: 10.1109/TMTT.2007.900343.
    [9]
    HAN Liang and WU Ke. Joint wireless communication and radar sensing systems—State of the art and future prospects[J]. IET Microwaves, Antennas & Propagation, 2013, 7(11): 876–885. doi: 10.1049/iet-map.2012.0450.
    [10]
    YOUNIS M, FISCHER C, and WIESBECK W. Digital beamforming in SAR systems[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(7): 1735–1739. doi: 10.1109/TGRS.2003.815662.
    [11]
    CURRIE A and BROWN M A. Wide-swath SAR[J]. IEE Proceedings F (Radar and Signal Processing), 1992, 139(2): 122–135. doi: 10.1049/ip-f-2.1992.0016.
    [12]
    STURM C and WIESBECK W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. doi: 10.1109/JPROC.2011.2131110.
    [13]
    JACYNA G M, FELL B, and MCLEMORE D. A high-level overview of fundamental limits studies for the DARPA SSPARC program[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 3558–3561. doi: 10.1109/RADAR.2016.7485100.
    [14]
    CHIRIYATH A R, PAUL B, and BLISS D W. Joint radar-communications information bounds with clutter: The phase noise menace[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 2256–2260. doi: 10.1109/RADAR.2016.7485311.
    [15]
    RICHMOND C D, BASU P, LEARNED R E, et al. Performance bounds on cooperative radar and communication systems operation[C]. 2016 IEEE Radar Conference, Philadelphia, USA, 2016: 1887–1891. doi: 10.1109/RADAR.2016.7485101.
    [16]
    KIM J H, YOUNIS M, MOREIRA A, et al. Spaceborne MIMO synthetic aperture radar for multimodal operation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(5): 2453–2466. doi: 10.1109/TGRS.2014.2360148.
    [17]
    WANG Jie, LIANG Xingdong, CHEN Longyong, et al. First demonstration of joint wireless communication and high-resolution SAR imaging using airborne MIMO radar system[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(9): 6619–6632. doi: 10.1109/TGRS.2019.2907561.
    [18]
    PENDRY J B, SCHURIG D, and SMITH D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780–1782. doi: 10.1126/science.1125907.
    [19]
    WEI Menglin, ZHAO Hanting, GALDI V, et al. Metasurface-enabled smart wireless attacks at the physical layer[J]. Nature Electronics, 2023, 6(8): 610–618. doi: 10.1038/s41928-023-01011-0.
    [20]
    ENGHETA N and ZIOLKOWSKI R W. Metamaterials: Physics and Engineering Explorations[M]. Hoboken, USA: Wiley, 2006: 155–173.
    [21]
    LI Lianlin, CUI Tiejun, JI Wei, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9.
    [22]
    WANG Xin, HAN Jiaqi, LI Guanxuan, et al. High-performance costefficient simultaneous wireless information and power transfers deploying jointly modulated amplifying programmable metasurface[J]. Nature Communications, 2023, 14(1): 6002. doi: 10.1038/s41467-023-41763-z.
    [23]
    YANG Bo, CHEN Xiaojie, CHU Jie, et al. A 5.8-GHz phased array system using power-variable phase-controlled magnetrons for wireless power transfer[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(11): 4951–4959. doi: 10.1109/TMTT.2020.3007187.
    [24]
    ALALI B, ZELENCHUK D, and FUSCO V. A 2D reflective metasurface augmented Luneburg lens antenna for 5G communications[C]. 2022 International Workshop on Antenna Technology, Dublin, Ireland, 2022: 136–138. doi: 10.1109/iWAT54881.2022.9811041.
    [25]
    LIANG Qiuyan and LAU B K. Beam reconfigurable reflective metasurface for indoor wireless communications[C]. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Singapore, Singapore, 2021: 4358–4359. doi: 10.1109/APS/URSI47566.2021.9703707.
    [26]
    ZHANG Lei, CHEN Xiaoqing, CHENG Qiang, et al. Space-time-coding digital metasurfaces for new-architecture wireless communications[C]. 2022 16th European Conference on Antennas and Propagation, Madrid, Spain, 2022: 684–688. doi: 10.23919/EuCAP53622.2022.9769603.
    [27]
    CUMMING I G and WONG F H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation[M]. Boston: Artech House, 2005.
    [28]
    WATTS S. Modeling and simulation of coherent sea clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3303–3317. doi: 10.1109/TAES.2012.6324707.
    [29]
    WANG Jie, LIANG Xingdong, CHEN Longyong, et al. Joint wireless communication and high resolution SAR imaging using airborne mimo radar system[C]. IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 2511–2514. doi: 10.1109/IGARSS.2019.8897826.
    [30]
    PROAKIS J G and SALEHI M. Digital Communications[M]. 5th ed. New York: McGraw-Hill, 2007: 273–301.
    [31]
    GOLDSMITH A. Wireless Communications[M]. Cambridge: Cambridge University Press, 2005: 157–166.
    [32]
    RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2014: 314–333.
    [33]
    TANG Wankai, CHEN Mingzheng, CHEN Xiangyu, et al. Wireless communications with reconfigurable intelligent surface: Path loss modeling and experimental measurement[J]. IEEE Transactions on Wireless Communications, 2021, 20(1): 421–439. doi: 10.1109/TWC.2020.3024887.
    [34]
    DAI Junyan, TANG Wankai, CHEN Mingzheng, et al. Wireless communication based on information metasurfaces[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(3): 1493–1510. doi: 10.1109/TMTT.2021.3054662.
    [35]
    丁昊, 朱晨光, 刘宁波, 等. 高海况条件下海面漂浮小目标特征提取与分析[J]. 海军航空大学学报, 2023, 38(4): 301–312. doi: 10.7682/j.issn.2097-1427.2023.04.001.

    DING Hao, ZHU Chenguang, LIU Ningbo, et al. Feature extraction and analysis of small floating targets in high sea conditions[J]. Journal of Naval Aviation University, 2023, 38(4): 301–312. doi: 10.7682/j.issn.2097-1427.2023.04.001.
    [36]
    BROSCHAT S L. Reflection loss from a “Pierson-Moskowitz” sea surface using the nonlocal small slope approximation[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 632–634. doi: 10.1109/36.739134.
    [37]
    SHI Shuo, ZHANG Heng, DENG Yunkai, et al. Increase the coherent processing interval for SAR focusing of maneuvering ships by data resampling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5210322. doi: 10.1109/TGRS.2024.3390790.
    [38]
    WANG Peng, LI Zhenning, WEI Zhaohui, et al. Space-time-coding digital metasurface element design based on state recognition and mapping methods with CNN-LSTM-DNN[J]. IEEE Transactions on Antennas and Propagation, 2024, 72(6): 4962–4975. doi: 10.1109/TAP.2024.3349778.
    [39]
    WANG Di, YIN Lizheng, HUANG Tiejun, et al. Design of a 1 bit broadband space-time-coding digital metasurface element[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(4): 611–615. doi: 10.1109/LAWP.2020.2973424.
    [40]
    CARRARA W G, GOODMAN R S, and MAJEWSKI R M. Spotlight Synthetic Aperture Radar: Signal Processing Algorithms[M]. Boston: Artech House, 1995: 217–219.
    [41]
    ROSENBERG L, OUELLETTE J D, and DOWGIALLO D J. Passive bistatic sea clutter statistics from spaceborne illuminators[J]. IEEE Transactions on Aerospace and Electronic Systems, 56(5): 3971–3984.
    [42]
    ARMSTRONG B C and GRIFFITHS H D. CFAR detection of fluctuating targets in spatially correlated K-distributed clutter[J]. IEE Proceedings F (Radar and Signal Processing), 1991, 138(2): 139–152. doi: 10.1049/ip-f-2.1991.0020.
    [43]
    TULINO A M and VERDÚ S. Random matrix theory and wireless communications[J]. Foundations and Trends® in Communications and Information Theory, 2004, 1(1): 1–182. doi: 10.1561/0100000001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1188) PDF downloads(206) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint