Citation: | SUN Xiaokun, YUN Zekai, HU Canbin, et al. End-to-end registration algorithm for high-resolution multi-view SAR images[J]. Journal of Radars, in press. doi: 10.12000/JR24211 |
[1] |
黄钟泠, 姚西文, 韩军伟. 面向SAR图像解译的物理可解释深度学习技术进展与探讨[J]. 雷达学报, 2022, 11(1): 107–125. doi: 10.12000/JR21165.
HUANG Zhongling, YAO Xiwen, and HAN Junwei. Progress and perspective on physically explainable deep learning for synthetic aperture radar image interpretation[J]. Journal of Radars, 2022, 11(1): 107–125. doi: 10.12000/JR21165.
|
[2] |
徐真, 王宇, 李宁, 等. 一种基于CNN的SAR图像变化检测方法[J]. 雷达学报, 2017, 6(5): 483–491. doi: 10.12000/JR17075.
XU Zhen, WANG Yu, LI Ning, et al. A novel approach to change detection in SAR images with CNN classification[J]. Journal of Radars, 2017, 6(5): 483–491. doi: 10.12000/JR17075.
|
[3] |
王志豪, 李刚, 蒋骁. 基于光学和SAR遥感图像融合的洪灾区域检测方法[J]. 雷达学报, 2020, 9(3): 539–553. doi: 10.12000/JR19095.
WANG Zhihao, LI Gang, and JIANG Xiao. Flooded area detection method based on fusion of optical and SAR remote sensing images[J]. Journal of Radars, 2020, 9(3): 539–553. doi: 10.12000/JR19095.
|
[4] |
洪文, 王彦平, 林赟, 等. 新体制SAR三维成像技术研究进展[J]. 雷达学报, 2018, 7(6): 633–654. doi: 10.12000/JR18109.
HONG Wen, WANG Yanping, LIN Yun, et al. Research progress on three-dimensional SAR imaging techniques[J]. Journal of Radars, 2018, 7(6): 633–654. doi: 10.12000/JR18109.
|
[5] |
丁赤飚, 刘佳音, 雷斌, 等. 高分三号SAR卫星系统级几何定位精度初探[J]. 雷达学报, 2017, 6(1): 11–16. doi: 10.12000/JR17024.
DING Chibiao, LIU Jiayin, LEI Bin, et al. Preliminary exploration of systematic geolocation accuracy of GF-3 SAR satellite system[J]. Journal of Radars, 2017, 6(1): 11–16. doi: 10.12000/JR17024.
|
[6] |
XIANG Yuming, PENG Lingxiao, WANG Feng, et al. Fast registration of multiview slant-range SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19(3): 4007505. doi: 10.1109/LGRS.2020.3045099.
|
[7] |
WEI S and LAI Shanghong. Fast template matching based on normalized cross correlation with adaptive multilevel winner update[J]. IEEE Transactions on Image Processing, 2008, 17(11): 2227–2235. doi: 10.1109/TIP.2008.2004615.
|
[8] |
WANG Fei and VEMURI B C. Non-rigid multi-modal image registration using cross-cumulative residual entropy[J]. International Journal of Computer Vision, 2007, 74(2): 201–215. doi: 10.1007/s11263-006-0011-2.
|
[9] |
DELLINGER F, DELON J, GOUSSEAU Y, et al. SAR-SIFT: A SIFT-like algorithm for SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 453–466. doi: 10.1109/TGRS.2014.2323552.
|
[10] |
项德良, 徐益豪, 程建达, 等. 一种基于特征交汇关键点检测和Sim-CSPNet的SAR图像配准算法[J]. 雷达学报, 2022, 11(6): 1081–1097. doi: 10.12000/JR22110.
XIANG Deliang, XU Yihao, CHENG Jianda, et al. An algorithm based on a feature interaction-based keypoint detector and sim-CSPNet for SAR image registration[J]. Journal of Radars, 2022, 11(6): 1081–1097. doi: 10.12000/JR22110.
|
[11] |
LIAO Furong, CHEN Yan, CHEN Yunping, et al. SAR image registration based on optimized ransac algorithm with mixed feature extraction[C]. 2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, USA, 2020: 1153–1156. doi: 10.1109/IGARSS39084.2020.9323180.
|
[12] |
DENG Yang and DENG Yunkai. Two-step matching approach to obtain more control points for SIFT-like very-high-resolution SAR image registration[J]. Sensors, 2023, 23(7): 3739. doi: 10.3390/s23073739.
|
[13] |
XIANG Deliang, XIE Yuzhen, CHENG Jianda, et al. Optical and SAR image registration based on feature decoupling network[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5235913. doi: 10.1109/TGRS.2022.3211858.
|
[14] |
XIANG Yuming, JIAO Niangang, LIU Rui, et al. A geometry-aware registration algorithm for multiview high-resolution SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5234818. doi: 10.1109/TGRS.2022.3205382.
|
[15] |
GUO Qiangliang, XIAO Jin, HU Xiaoguang, et al. Local convolutional features and metric learning for SAR image registration[J]. Cluster Computing, 2019, 22(2): 3103–3114. doi: 10.1007/s10586-018-1946-0.
|
[16] |
FAN Jianwei, WU Yan, WANG Fan, et al. SAR image registration using phase congruency and nonlinear diffusion-based SIFT[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(3): 562–566. doi: 10.1109/LGRS.2014.2351396.
|
[17] |
FAN Yibo, WANG Feng, and WANG Haipeng. A transformer-based coarse-to-fine wide-swath SAR image registration method under weak texture conditions[J]. Remote Sensing, 2022, 14(5): 1175. doi: 10.3390/rs14051175.
|
[18] |
ELWAN M, AMEIN A S, MOUSA A, et al. SAR image matching based on local feature detection and description using convolutional neural network[J]. Security and Communication Networks, 2022, 2022(1): 5669069. doi: 10.1155/2022/5669069.
|
[19] |
MEN Peng, GUO Hao, AN Jubai, et al. An improved L2Net for repetitive texture image registration with intensity difference heterogeneous SAR images[J]. Remote Sensing, 2022, 14(11): 2527. doi: 10.3390/rs14112527.
|
[20] |
ZHANG Yifan, LI Zhiwei, WANG Wen, et al. A robust registration method for multi-view SAR images based on best buddy similarity[C]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Changsha, China, 2024: 881–886. doi: 10.5194/isprs-archives-XLVIII-1-2024-881-2024.
|
[21] |
LI Zeyi, ZHANG Haitao, and HUANG Yihang. A rotation-invariant optical and SAR image registration algorithm based on deep and Gaussian features[J]. Remote Sensing, 2021, 13(13): 2628. doi: 10.3390/rs13132628.
|
[22] |
YU Wei, SUN Xiaohuai, YANG Kuiyuan, et al. Hierarchical semantic image matching using CNN feature pyramid[J]. Computer Vision and Image Understanding, 2018, 169: 40–51. doi: 10.1016/j.cviu.2018.01.001.
|
[23] |
SAUVALLE B and DE LA FORTELLE A. Unsupervised multi-object segmentation using attention and soft-argmax[C]. 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, USA, 2023: 3267–3276. doi: 10.1109/WACV56688.2023.00328.
|
[24] |
NUNES C F G and PÁDUA F L C. A local feature descriptor based on Log-Gabor filters for keypoint matching in multispectral images[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(10): 1850–1854. doi: 10.1109/LGRS.2017.2738632.
|
[25] |
HOSANG J, BENENSON R, and SCHIELE B. Learning non-maximum suppression[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, USA, 2017: 4507–4515. doi: 10.1109/CVPR.2017.685.
|
[26] |
CHUNG S W, CHUNG J S, and KANG H G. Perfect match: Self-supervised embeddings for cross-modal retrieval[J]. IEEE Journal of Selected Topics in Signal Processing, 2020, 14(3): 568–576. doi: 10.1109/JSTSP.2020.2987720.
|
[27] |
CHEN Feng, WU Fei, XU Jing, et al. Adaptive deformable convolutional network[J]. Neurocomputing, 2021, 453: 853–864. doi: 10.1016/j.neucom.2020.06.128.
|
[28] |
KILIÇARSLAN S and CELIK M. RSigELU: A nonlinear activation function for deep neural networks[J]. Expert Systems with Applications, 2021, 174: 114805. doi: 10.1016/j.eswa.2021.114805.
|
[29] |
XU Jin, LI Zishan, DU Bowen, et al. Reluplex made more practical: Leaky ReLU[C]. 2020 IEEE Symposium on Computers and Communications, Rennes, 2020: 1–7. doi: 10.1109/ISCC50000.2020.9219587.
|
[30] |
LI Jiayuan, HU Qingwu, and AI Mingyao. RIFT: Multi-modal image matching based on radiation-variation insensitive feature transform[J]. IEEE Transactions on Image Processing, 2020, 29: 3296–3310. doi: 10.1109/TIP.2019.2959244.
|
[31] |
GERMAIN H, BOURMAUD G, and LEPETIT V. S2DNet: Learning image features for accurate sparse-to-dense matching[C]. The 16th European Conference on Computer Vision, Glasgow, UK, 2020: 626–643. doi: 10.1007/978-3-030-58580-8_37.
|
[32] |
JAMIN A and HUMEAU-HEURTIER A. (Multiscale) cross-entropy methods: A review[J]. Entropy, 2019, 22(1): 45. doi: 10.3390/e22010045.
|
[33] |
YAMADA M, SIGAL L, RAPTIS M, et al. Cross-domain matching with squared-loss mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1764–1776. doi: 10.1109/TPAMI.2014.2388235.
|
[34] |
ZHU Li and ZHU Chunqiang. Application of Hausdorff distance in image matching[C]. 2014 IEEE Workshop on Electronics, Computer and Applications, Ottawa, Canada, 2014: 97–100. doi: 10.1109/IWECA.2014.6845566.
|
[35] |
HE Yueping, WANG Xueqian, ZHANG Yiming, et al. A novel loss function for optical and SAR image matching: Balanced positive and negative samples[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4028805. doi: 10.1109/LGRS.2022.3225965.
|
[36] |
JIA Weikuan, SUN Meili, LIAN Jian, et al. Feature dimensionality reduction: A review[J]. Complex & Intelligent Systems, 2022, 8(3): 2663–2693. doi: 10.1007/s40747-021-00637-x.
|
[37] |
DETONE D, MALISIEWICZ T, and RABINOVICH A. SuperPoint: Self-supervised interest point detection and description[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Salt Lake City, USA, 2018: 224–236. doi: 10.1109/CVPRW.2018.00060.
|
[38] |
HAN Xufeng, LEUNG T, JIA Yangqing, et al. MatchNet: Unifying feature and metric learning for patch-based matching[C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 3279–3286. doi: 10.1109/CVPR.2015.7298948.
|
[39] |
HASHIMOTO M, ENOMOTO M, and FUKUSHIMA Y. Coseismic deformation from the 2008 Wenchuan, China, earthquake derived from ALOS/PALSAR images[J]. Tectonophysics, 2010, 491(1/4): 59–71. doi: 10.1016/j.tecto.2009.08.034.
|
[40] |
GEUDTNER D, TORRES R, SNOEIJ P, et al. Sentinel-1 system capabilities and applications[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 1457–1460. doi: 10.1109/IGARSS.2014.6946711.
|
[41] |
李志远, 郭嘉逸, 张月婷, 等. 基于自适应动量估计优化器与空变最小熵准则的SAR图像船舶目标自聚焦算法[J]. 雷达学报, 2022, 11(1): 83–94. doi: 10.12000/JR21159.
LI Zhiyuan, GUO Jiayi, ZHANG Yueting, et al. A novel autofocus algorithm of ship target in SAR image based on the adaptive momentum estimation optimizer and space-variant minimum entropy criteria[J]. Journal of Radars, 2022, 11(1): 83–94. doi: 10.12000/JR21159.
|
[42] |
苏娟, 李彬, 王延钊. 一种基于封闭均匀区域的SAR图像配准方法[J]. 电子与信息学报, 2016, 38(12): 3282–3288. doi: 10.11999/JEIT160141.
SU Juan, LI Bin, and WANG Yanzhao. SAR image registration algorithm based on closed uniform regions[J]. Journal of Electronics & Information Technology, 2016, 38(12): 3282–3288. doi: 10.11999/JEIT160141.
|