Citation: | WANG Yahui, YANG Qing, LI Zhongyu, et al. Imaging time optimization method for ship targets of bistatic SAR[J]. Journal of Radars, in press. doi: 10.12000/JR24193 |
[1] |
BROWN W M and PORCELLO L J. An introduction to synthetic-aperture radar[J]. IEEE Spectrum, 1969, 6(9): 52–62. doi: 10.1109/MSPEC.1969.5213674.
|
[2] |
LI Zhongyu, HUANG Chuan, SUN Zhichao, et al. BeiDou-based passive multistatic radar maritime moving target detection technique via space-time hybrid integration processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5802313. doi: 10.1109/TGRS.2021.3128650.
|
[3] |
YANG Qing, LI Zhongyu, LI Junao, et al. A novel bistatic SAR maritime ship target imaging algorithm based on cubic phase time-scaled transformation[J]. Remote Sensing, 2023, 15(5): 1330. doi: 10.3390/rs15051330.
|
[4] |
武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13–35. doi: 10.12000/JR22213.
WU Junjie, SUN Zhichao, LV Zheng, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator[J]. Journal of Radars, 2023, 12(1): 13–35. doi: 10.12000/JR22213.
|
[5] |
WU Junjie, YANG Jianyu, HUANG Yulin, et al. Bistatic forward-looking SAR: Theory and challenges[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–4. doi: 10.1109/RADAR.2009.4976959.
|
[6] |
QIU Xiaolan, HU Donghui, and DING Chibiao. Some reflections on bistatic SAR of forward-looking configuration[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 735–739. doi: 10.1109/LGRS.2008.2004506.
|
[7] |
LI Zhongyu, YE Hongda, LIU Zhutian, et al. Bistatic SAR clutter-ridge matched STAP method for nonstationary clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216914. doi: 10.1109/TGRS.2021.3125043.
|
[8] |
武俊杰, 孙稚超, 杨建宇, 等. 基于GF-3照射的星机双基SAR成像及试验验证[J]. 雷达科学与技术, 2021, 19(3): 241–247. doi: 10.3969/j.issn.1672-2337.2021.03.002.
WU Junjie, SUN Zhichao, YANG Jianyu, et al. Spaceborne airborne bistatic SAR using GF-3 illumination—technology and experiment[J]. Radar Science and Technology, 2021, 19(3): 241–247. doi: 10.3969/j.issn.1672-2337.2021.03.002.
|
[9] |
安洪阳, 孙稚超, 王朝栋, 等. GEO-LEO双基SAR序贯多帧-多通道联合重建无模糊成像方法[J]. 雷达学报, 2022, 11(3): 376–385. doi: 10.12000/JR21133.
AN Hongyang, SUN Zhichao, WANG Chaodong, et al. Unambiguous imaging method for GEO-LEO bistatic SAR based on joint sequential multiframe and multichannel receiving recovery[J]. Journal of Radars, 2022, 11(3): 376–385. doi: 10.12000/JR21133.
|
[10] |
LI Junao, LI Zhongyu, YANG Qing, et al. Efficient matrix sparse recovery STAP method based on kronecker transform for BiSAR sea clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5103218. doi: 10.1109/TGRS.2024.3362844.
|
[11] |
李中余, 皮浩卓, 李俊奥, 等. 双基SAR空时自适应ANM-ADMM-Net杂波抑制技术[J]. 雷达学报, 待出版. doi: 10.12000/JR24032.
LI Zhongyu, PI Haozhuo, LI Jun’ao, et al. Clutter suppression technology based space-time adaptive ANM-ADMM-Net for bistatic SAR[J]. Journal of Radars, in press. doi: 10.12000/JR24032.
|
[12] |
段渝, 杨青, 李中余, 等. 基于短时FrFT的双基雷达舰船成像最优时间段选取方法[J]. 现代雷达, 2023, 45(1): 18–25. doi: 10.16592/j.cnki.1004-7859.2023.01.003.
DUAN Yu, YANG Qing, LI Zhongyu, et al. Optimal imaging time selection method based on short-time FrFT for bistatic radar ship target imaging[J]. Modern Radar, 2023, 45(1): 18–25. doi: 10.16592/j.cnki.1004-7859.2023.01.003.
|
[13] |
LI Zhongyu, ZHANG Xiaodong, YANG Qing, et al. Hybrid SAR-ISAR image formation via joint FrFT-WVD processing for BFSAR ship target high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5215713. doi: 10.1109/TGRS.2021.3117280.
|
[14] |
LIU Peng and JIN Yaqiu. A study of ship rotation effects on SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3132–3144. doi: 10.1109/TGRS.2017.2662038.
|
[15] |
李亚超, 周峰, 邢孟道, 等. 一种直升机的舰船Dechirp实测数据SAR成像方法[J]. 电子与信息学报, 2007, 29(8): 1794–1798. doi: 10.3724/SP.J.1146.2005.01535.
LI Yachao, ZHOU Feng, XING Mengdao, et al. An effective method for ship Dechirp data imaging in helicopter SAR system[J]. Journal of Electronics & Information Technology, 2007, 29(8): 1794–1798. doi: 10.3724/SP.J.1146.2005.01535.
|
[16] |
WANG Yong, KANG Jian, and JIANG Yicheng. ISAR imaging of maneuvering target based on the local polynomial Wigner distribution and integrated high-order ambiguity function for cubic phase signal model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2971–2991. doi: 10.1109/JSTARS.2014.2301158.
|
[17] |
TONG Xuyao, BAO Min, SUN Guangcai, et al. Refocusing of moving ships in squint SAR images based on spectrum orthogonalization[J]. Remote Sensing, 2021, 13(14): 2807. doi: 10.3390/rs13142807.
|
[18] |
CHEN V C and QIAN Shi’e. Joint time-frequency transform for radar range-Doppler imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 486–499. doi: 10.1109/7.670330.
|
[19] |
ZHOU Peng, ZHANG Xi, SUN Weifeng, et al. Time-frequency analysis-based time-windowing algorithm for the inverse synthetic aperture radar imaging of ships[J]. Journal of Applied Remote Sensing, 2018, 12(1): 015001. doi: 10.1117/1.JRS.12.015001.
|
[20] |
CAO Rui, WANG Yong, LIN Yanchao, et al. An efficient preprocessing approach for airborne hybrid SAR and ISAR imaging of ship target based on kernel distribution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 5147–5162. doi: 10.1109/JSTARS.2022.3183196.
|
[21] |
PARK J H and MYUNG N H. Enhanced and efficient ISAR image focusing using the discrete Gabor representation in an oversampling scheme[J]. Progress in Electromagnetics Research, 2013, 138: 227–244. doi: 10.2528/PIER13022004.
|
[22] |
LI Ning, SHEN Qingyuan, WANG Ling, et al. Optimal time selection for ISAR imaging of ship targets based on time-frequency analysis of multiple scatterers[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4017505. doi: 10.1109/LGRS.2021.3103915.
|
[23] |
PASTINA D, MONTANARI A, and APRILE A. Motion estimation and optimum time selection for ship ISAR imaging[C]. 2003 IEEE Radar Conference, Huntsville, USA, 2003: 7–14. doi: 10.1109/NRC.2003.1203371.
|
[24] |
汪玲, 朱兆达, 朱岱寅. 机载ISAR舰船侧视和俯视成像时间段选择[J]. 电子与信息学报, 2008, 30(12): 2835–2839. doi: 10.3724/SP.J.1146.2007.00919.
WANG Ling, ZHU Zhaoda, and ZHU Daiyin. Interval selections for side-view or top-view imaging of ship targets with airborne ISAR[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2835–2839. doi: 10.3724/SP.J.1146.2007.00919.
|
[25] |
王冉, 姜义成. ISAR舰船目标成像时间段选取[J]. 哈尔滨工业大学学报, 2011, 43(7): 57–60. doi: 10.11918/j.issn.0367-6234.2011.07.012.
WANG Ran and JIANG Yicheng. Time selection for ship target ISAR imaging[J]. Journal of Harbin Institute of Technology, 2011, 43(7): 57–60. doi: 10.11918/j.issn.0367-6234.2011.07.012.
|
[26] |
CAO Rui, WANG Yong, ZHANG Yun, et al. Optimal time selection for ISAR imaging of ship target via novel approach of centerline extraction with RANSAC algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9987–10005. doi: 10.1109/JSTARS.2022.3220496.
|
[27] |
SHAO Shuai, ZHANG Lei, and LIU Hongwei. An optimal imaging time interval selection technique for marine targets ISAR imaging based on sea dynamic prior information[J]. IEEE Sensors Journal, 2019, 19(13): 4940–4953. doi: 10.1109/JSEN.2019.2903399.
|
[28] |
CAO Rui, WANG Yong, and ZHANG Yun. Analysis of the imaging projection plane for ship target with spaceborne radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205021. doi: 10.1109/TGRS.2021.3068690.
|
[29] |
SU Fulin and YANG Hongxin. Optimum imaging time selection algorithm for inverse synthetic aperture radar images using geometric features and image gradient[J]. Journal of Applied Remote Sensing, 2016, 10(3): 035025. doi: 10.1117/1.JRS.10.035025.
|
[30] |
MARTORELLA M and BERIZZI F. Time windowing for highly focused ISAR image reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 992–1007. doi: 10.1109/TAES.2005.1541444.
|
[31] |
BERIZZI F and DIANI M. ISAR imaging of rolling, pitching and yawing targets[C]. International Radar Conference, Beijing, China, 1996: 346–349. doi: 10.1109/ICR.1996.574458.
|
[32] |
杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4): 482–501. doi: 10.3969/j.issn.1001-0548.2016.04.001.
YANG Jianyu. Bistatic synthetic aperture radar technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482–501. doi: 10.3969/j.issn.1001-0548.2016.04.001.
|
[33] |
MARTORELLA M, PALMER J, HOMER J, et al. On bistatic inverse synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1125–1134. doi: 10.1109/TAES.2007.4383602.
|
[34] |
XIA Xianggen, WANG Genyuan, and CHEN V C. Quantitative SNR analysis for ISAR imaging using joint time-frequency analysis-short time Fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 649–659. doi: 10.1109/TAES.2002.1008993.
|
[35] |
强勇, 焦李成, 保铮. 一种有效的用于雷达弱目标检测的算法[J]. 电子学报, 2003, 31(3): 440–443. doi: 10.3321/j.issn:0372-2112.2003.03.030.
QIANG Yong, JIAO Licheng, and BAO Zheng. An effective track-before-detect algorithm for dim target detection[J]. Acta Electronica Sinica, 2003, 31(3): 440–443. doi: 10.3321/j.issn:0372-2112.2003.03.030.
|
[36] |
STORN R and PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359. doi: 10.1023/A:1008202821328.
|
[37] |
DAS S and SUGANTHAN P N. Differential evolution: A survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4–31. doi: 10.1109/TEVC.2010.2059031.
|
[38] |
ESTEVEZ P A, TESMER M, PEREZ C A, et al. Normalized mutual information feature selection[J]. IEEE Transactions on Neural Networks, 2009, 20(2): 189–201. doi: 10.1109/TNN.2008.2005601.
|
[39] |
杨建宇. 双基合成孔径雷达[M]. 北京: 国防工业出版社, 2017: 65–66.
YANG Jianyu. Bistatic Synthetic Aperture Radar[M]. Beijing: National Defense Industry Press, 2017: 65–66.
|
[40] |
WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752.
|
[41] |
DUAN Yu, WANG Yahui, ZHOU Zhuo, et al. Joint optimal selection of imaging time interval and imaging projection plane based on short-times fraction Fourier transform for bistatic SAR maritime ship target imaging[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 8130–8133. doi: 10.1109/IGARSS52108.2023.10283218.
|
[42] |
CAO Rui, WANG Yong, YEH C, et al. A novel optimal time window determination approach for ISAR imaging of ship targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3475–3503. doi: 10.1109/JSTARS.2022.3161204.
|
[1] | ZHANG Qiang, WANG Zhihao, WANG Xueqian, LI Gang, HUANG Liwei, SONG Huina, SONG Zhaohui. Cooperative Detection of Ships in Optical and SAR Remote Sensing Images Based on Neighborhood Saliency[J]. Journal of Radars, 2024, 13(4): 885-903. doi: 10.12000/JR24037 |
[2] | LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043 |
[3] | HU Zhanyi. A Note on Visual Semantics in SAR 3D Imaging[J]. Journal of Radars, 2022, 11(1): 20-26. doi: 10.12000/JR21149 |
[4] | WANG Bingnan, ZHAO Juanying, LI Wei, SHI Ruihua, XIANG Maosheng, ZHOU Yu, JIA Jianjun. Array Synthetic Aperture Ladar with High Spatial Resolution Technology[J]. Journal of Radars, 2022, 11(6): 1110-1118. doi: 10.12000/JR22204 |
[5] | AN Hongyang, SUN Zhichao, WANG Chaodong, WU Junjie, YANG Jianyu. Unambiguous Imaging Method for GEO-LEO Bistatic SAR Based on Joint Sequential Multiframe and Multichannel Receiving Recovery[J]. Journal of Radars, 2022, 11(3): 376-385. doi: 10.12000/JR21133 |
[6] | ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods(in English)[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004 |
[7] | LUO Ying, NI Jiacheng, ZHANG Qun. Synthetic Aperture Radar Learning-imaging Method Based onData-driven Technique and Artificial Intelligence[J]. Journal of Radars, 2020, 9(1): 107-122. doi: 10.12000/JR19103 |
[8] | TIAN Biao, LIU Yang, HU Pengjiang, WU Wenzhen, XU Shiyou, CHEN Zengping. Review of High-resolution Imaging Techniques of Wideband Inverse Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(5): 765-802. doi: 10.12000/JR20060 |
[9] | WANG Xuesong, CHEN Siwei. Polarimetric Synthetic Aperture Radar Interpretation and Recognition: Advances and Perspectives[J]. Journal of Radars, 2020, 9(2): 259-276. doi: 10.12000/JR19109 |
[10] | WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077 |
[11] | XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102 |
[12] | ZHU Daiyin, ZHANG Ying, YU Xiang, MAO Xinhua, ZHANG Jindong, LI Yong. Imaging Signal Processing Technology for Miniature Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 793-803. doi: 10.12000/JR19094 |
[13] | Chen Xiaolong, Guan Jian, He You, Yu Xiaohan. High-resolution Sparse Representation and Its Applications in Radar Moving Target Detection[J]. Journal of Radars, 2017, 6(3): 239-251. doi: 10.12000/JR16110 |
[14] | Zhang Keshu, Pan Jie, Wang Ran, Li Guangzuo, Wang Ning, Wu Yirong. Study of Wide Swath Synthetic Aperture Ladar Imaging Techology[J]. Journal of Radars, 2017, 6(1): 1-10. doi: 10.12000/JR16152 |
[15] | Zhou Yejian, Zhang Lei, Wang Hongxian, Xing Mengdao. Performance Analysis on ISAR Imaging of Space Targets[J]. Journal of Radars, 2017, 6(1): 17-24. doi: 10.12000/JR16136 |
[16] | Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114 |
[17] | He Feng, Yang Yang, Dong Zhen, Liang Dian-nong. Progress and Prospects of Curvilinear SAR 3-D Imaging[J]. Journal of Radars, 2015, 4(2): 130-135. doi: 10.12000/JR14119 |
[18] | Wu Yi-rong. Concept on Multidimensional Space Joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047 |
[19] | Zeng Tao. Bistatic SAR: State of the Art and Development Trend[J]. Journal of Radars, 2012, 1(4): 329-341. doi: 10.3724/SP.J.1300.2012.20093 |