Processing math: 100%
WANG Yahui, YANG Qing, LI Zhongyu, et al. Imaging time optimization method for ship targets of bistatic SAR[J]. Journal of Radars, in press. doi: 10.12000/JR24193
Citation: WANG Yahui, YANG Qing, LI Zhongyu, et al. Imaging time optimization method for ship targets of bistatic SAR[J]. Journal of Radars, in press. doi: 10.12000/JR24193

Imaging Time Optimization Method for Ship Targets of Bistatic SAR

DOI: 10.12000/JR24193
Funds:  The National Natural Science Foundation of China (62171084), The Postdoctoral Fellowship Program (Grade B) of China Postdoctoral Science Foundation (GZB20240122)
More Information
  • Bistatic Synthetic Aperture Radar (SAR), with the separated transmitter and receiver working in coordination, cannot only achieves high-resolution imaging in the forward-looking mode, but also possesses outstanding concealment and anti-interference capabilities. Therefore, bistatic SAR thrives in both civilian and military applications, such as ocean monitoring or reconnaissance imaging. However, ship targets are typically influenced by sea waves, generating unknown and complex three-dimensional oscillations. These random oscillations and radar motions vary with slow time, making the imaging view of bistatic SAR ship targets strongly time-dependent, so that it is extremely difficult to extract effective target features from final imaging results. Moreover, target oscillations are also coupled with the motion of bistatic platforms, which causes severe nonlinear spatial Doppler shifts in target echoes, and thus bistatic SAR images are usually defocused. To address these problems, this paper proposes an imaging method for bistatic SAR ship target by imaging time optimization, which generates well-focused bistatic SAR ship target images with the optimal views. Firstly, short-time Fourier transform is utilized to extract the time-frequency information of the ship. Secondly, based on this time-frequency information from multiple strong scatterers, the optimal three-dimensional rotation parameters are estimated, revealing the time-varying characteristics of the imaging projection plane. Then, the optimal imaging time centers are selected based on the optimal imaging projection planes, while the corresponding optimal imaging time intervals are chosen based on the optimal imaging resolutions. Finally, with the selected optimal imaging times, the desired images of the bistatic SAR ship target are produced. Simulation experiments verify the accuracy of target rotation parameter estimation under different bistatic configurations and noise conditions, as well as the effectiveness of imaging projection plane selection. In general, this method tackles with the issues of the time-varying imaging views of bistatic SAR ship targets and nonlinear spatial Doppler shifts, obtaining well-focused and optimally viewed target images, which significantly enhances the accuracy of subsequent target feature extraction.

     

  • [1]
    BROWN W M and PORCELLO L J. An introduction to synthetic-aperture radar[J]. IEEE Spectrum, 1969, 6(9): 52–62. doi: 10.1109/MSPEC.1969.5213674.
    [2]
    LI Zhongyu, HUANG Chuan, SUN Zhichao, et al. BeiDou-based passive multistatic radar maritime moving target detection technique via space-time hybrid integration processing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5802313. doi: 10.1109/TGRS.2021.3128650.
    [3]
    YANG Qing, LI Zhongyu, LI Junao, et al. A novel bistatic SAR maritime ship target imaging algorithm based on cubic phase time-scaled transformation[J]. Remote Sensing, 2023, 15(5): 1330. doi: 10.3390/rs15051330.
    [4]
    武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13–35. doi: 10.12000/JR22213.

    WU Junjie, SUN Zhichao, LV Zheng, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator[J]. Journal of Radars, 2023, 12(1): 13–35. doi: 10.12000/JR22213.
    [5]
    WU Junjie, YANG Jianyu, HUANG Yulin, et al. Bistatic forward-looking SAR: Theory and challenges[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–4. doi: 10.1109/RADAR.2009.4976959.
    [6]
    QIU Xiaolan, HU Donghui, and DING Chibiao. Some reflections on bistatic SAR of forward-looking configuration[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(4): 735–739. doi: 10.1109/LGRS.2008.2004506.
    [7]
    LI Zhongyu, YE Hongda, LIU Zhutian, et al. Bistatic SAR clutter-ridge matched STAP method for nonstationary clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5216914. doi: 10.1109/TGRS.2021.3125043.
    [8]
    武俊杰, 孙稚超, 杨建宇, 等. 基于GF-3照射的星机双基SAR成像及试验验证[J]. 雷达科学与技术, 2021, 19(3): 241–247. doi: 10.3969/j.issn.1672-2337.2021.03.002.

    WU Junjie, SUN Zhichao, YANG Jianyu, et al. Spaceborne airborne bistatic SAR using GF-3 illumination—technology and experiment[J]. Radar Science and Technology, 2021, 19(3): 241–247. doi: 10.3969/j.issn.1672-2337.2021.03.002.
    [9]
    安洪阳, 孙稚超, 王朝栋, 等. GEO-LEO双基SAR序贯多帧-多通道联合重建无模糊成像方法[J]. 雷达学报, 2022, 11(3): 376–385. doi: 10.12000/JR21133.

    AN Hongyang, SUN Zhichao, WANG Chaodong, et al. Unambiguous imaging method for GEO-LEO bistatic SAR based on joint sequential multiframe and multichannel receiving recovery[J]. Journal of Radars, 2022, 11(3): 376–385. doi: 10.12000/JR21133.
    [10]
    LI Junao, LI Zhongyu, YANG Qing, et al. Efficient matrix sparse recovery STAP method based on kronecker transform for BiSAR sea clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5103218. doi: 10.1109/TGRS.2024.3362844.
    [11]
    李中余, 皮浩卓, 李俊奥, 等. 双基SAR空时自适应ANM-ADMM-Net杂波抑制技术[J]. 雷达学报, 待出版. doi: 10.12000/JR24032.

    LI Zhongyu, PI Haozhuo, LI Jun’ao, et al. Clutter suppression technology based space-time adaptive ANM-ADMM-Net for bistatic SAR[J]. Journal of Radars, in press. doi: 10.12000/JR24032.
    [12]
    段渝, 杨青, 李中余, 等. 基于短时FrFT的双基雷达舰船成像最优时间段选取方法[J]. 现代雷达, 2023, 45(1): 18–25. doi: 10.16592/j.cnki.1004-7859.2023.01.003.

    DUAN Yu, YANG Qing, LI Zhongyu, et al. Optimal imaging time selection method based on short-time FrFT for bistatic radar ship target imaging[J]. Modern Radar, 2023, 45(1): 18–25. doi: 10.16592/j.cnki.1004-7859.2023.01.003.
    [13]
    LI Zhongyu, ZHANG Xiaodong, YANG Qing, et al. Hybrid SAR-ISAR image formation via joint FrFT-WVD processing for BFSAR ship target high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5215713. doi: 10.1109/TGRS.2021.3117280.
    [14]
    LIU Peng and JIN Yaqiu. A study of ship rotation effects on SAR image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(6): 3132–3144. doi: 10.1109/TGRS.2017.2662038.
    [15]
    李亚超, 周峰, 邢孟道, 等. 一种直升机的舰船Dechirp实测数据SAR成像方法[J]. 电子与信息学报, 2007, 29(8): 1794–1798. doi: 10.3724/SP.J.1146.2005.01535.

    LI Yachao, ZHOU Feng, XING Mengdao, et al. An effective method for ship Dechirp data imaging in helicopter SAR system[J]. Journal of Electronics & Information Technology, 2007, 29(8): 1794–1798. doi: 10.3724/SP.J.1146.2005.01535.
    [16]
    WANG Yong, KANG Jian, and JIANG Yicheng. ISAR imaging of maneuvering target based on the local polynomial Wigner distribution and integrated high-order ambiguity function for cubic phase signal model[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(7): 2971–2991. doi: 10.1109/JSTARS.2014.2301158.
    [17]
    TONG Xuyao, BAO Min, SUN Guangcai, et al. Refocusing of moving ships in squint SAR images based on spectrum orthogonalization[J]. Remote Sensing, 2021, 13(14): 2807. doi: 10.3390/rs13142807.
    [18]
    CHEN V C and QIAN Shi’e. Joint time-frequency transform for radar range-Doppler imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 486–499. doi: 10.1109/7.670330.
    [19]
    ZHOU Peng, ZHANG Xi, SUN Weifeng, et al. Time-frequency analysis-based time-windowing algorithm for the inverse synthetic aperture radar imaging of ships[J]. Journal of Applied Remote Sensing, 2018, 12(1): 015001. doi: 10.1117/1.JRS.12.015001.
    [20]
    CAO Rui, WANG Yong, LIN Yanchao, et al. An efficient preprocessing approach for airborne hybrid SAR and ISAR imaging of ship target based on kernel distribution[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 5147–5162. doi: 10.1109/JSTARS.2022.3183196.
    [21]
    PARK J H and MYUNG N H. Enhanced and efficient ISAR image focusing using the discrete Gabor representation in an oversampling scheme[J]. Progress in Electromagnetics Research, 2013, 138: 227–244. doi: 10.2528/PIER13022004.
    [22]
    LI Ning, SHEN Qingyuan, WANG Ling, et al. Optimal time selection for ISAR imaging of ship targets based on time-frequency analysis of multiple scatterers[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4017505. doi: 10.1109/LGRS.2021.3103915.
    [23]
    PASTINA D, MONTANARI A, and APRILE A. Motion estimation and optimum time selection for ship ISAR imaging[C]. 2003 IEEE Radar Conference, Huntsville, USA, 2003: 7–14. doi: 10.1109/NRC.2003.1203371.
    [24]
    汪玲, 朱兆达, 朱岱寅. 机载ISAR舰船侧视和俯视成像时间段选择[J]. 电子与信息学报, 2008, 30(12): 2835–2839. doi: 10.3724/SP.J.1146.2007.00919.

    WANG Ling, ZHU Zhaoda, and ZHU Daiyin. Interval selections for side-view or top-view imaging of ship targets with airborne ISAR[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2835–2839. doi: 10.3724/SP.J.1146.2007.00919.
    [25]
    王冉, 姜义成. ISAR舰船目标成像时间段选取[J]. 哈尔滨工业大学学报, 2011, 43(7): 57–60. doi: 10.11918/j.issn.0367-6234.2011.07.012.

    WANG Ran and JIANG Yicheng. Time selection for ship target ISAR imaging[J]. Journal of Harbin Institute of Technology, 2011, 43(7): 57–60. doi: 10.11918/j.issn.0367-6234.2011.07.012.
    [26]
    CAO Rui, WANG Yong, ZHANG Yun, et al. Optimal time selection for ISAR imaging of ship target via novel approach of centerline extraction with RANSAC algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9987–10005. doi: 10.1109/JSTARS.2022.3220496.
    [27]
    SHAO Shuai, ZHANG Lei, and LIU Hongwei. An optimal imaging time interval selection technique for marine targets ISAR imaging based on sea dynamic prior information[J]. IEEE Sensors Journal, 2019, 19(13): 4940–4953. doi: 10.1109/JSEN.2019.2903399.
    [28]
    CAO Rui, WANG Yong, and ZHANG Yun. Analysis of the imaging projection plane for ship target with spaceborne radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5205021. doi: 10.1109/TGRS.2021.3068690.
    [29]
    SU Fulin and YANG Hongxin. Optimum imaging time selection algorithm for inverse synthetic aperture radar images using geometric features and image gradient[J]. Journal of Applied Remote Sensing, 2016, 10(3): 035025. doi: 10.1117/1.JRS.10.035025.
    [30]
    MARTORELLA M and BERIZZI F. Time windowing for highly focused ISAR image reconstruction[J]. IEEE Transactions on Aerospace and Electronic Systems, 2005, 41(3): 992–1007. doi: 10.1109/TAES.2005.1541444.
    [31]
    BERIZZI F and DIANI M. ISAR imaging of rolling, pitching and yawing targets[C]. International Radar Conference, Beijing, China, 1996: 346–349. doi: 10.1109/ICR.1996.574458.
    [32]
    杨建宇. 双基地合成孔径雷达技术[J]. 电子科技大学学报, 2016, 45(4): 482–501. doi: 10.3969/j.issn.1001-0548.2016.04.001.

    YANG Jianyu. Bistatic synthetic aperture radar technology[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 482–501. doi: 10.3969/j.issn.1001-0548.2016.04.001.
    [33]
    MARTORELLA M, PALMER J, HOMER J, et al. On bistatic inverse synthetic aperture radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 1125–1134. doi: 10.1109/TAES.2007.4383602.
    [34]
    XIA Xianggen, WANG Genyuan, and CHEN V C. Quantitative SNR analysis for ISAR imaging using joint time-frequency analysis-short time Fourier transform[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(2): 649–659. doi: 10.1109/TAES.2002.1008993.
    [35]
    强勇, 焦李成, 保铮. 一种有效的用于雷达弱目标检测的算法[J]. 电子学报, 2003, 31(3): 440–443. doi: 10.3321/j.issn:0372-2112.2003.03.030.

    QIANG Yong, JIAO Licheng, and BAO Zheng. An effective track-before-detect algorithm for dim target detection[J]. Acta Electronica Sinica, 2003, 31(3): 440–443. doi: 10.3321/j.issn:0372-2112.2003.03.030.
    [36]
    STORN R and PRICE K. Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341–359. doi: 10.1023/A:1008202821328.
    [37]
    DAS S and SUGANTHAN P N. Differential evolution: A survey of the state-of-the-art[J]. IEEE Transactions on Evolutionary Computation, 2011, 15(1): 4–31. doi: 10.1109/TEVC.2010.2059031.
    [38]
    ESTEVEZ P A, TESMER M, PEREZ C A, et al. Normalized mutual information feature selection[J]. IEEE Transactions on Neural Networks, 2009, 20(2): 189–201. doi: 10.1109/TNN.2008.2005601.
    [39]
    杨建宇. 双基合成孔径雷达[M]. 北京: 国防工业出版社, 2017: 65–66.

    YANG Jianyu. Bistatic Synthetic Aperture Radar[M]. Beijing: National Defense Industry Press, 2017: 65–66.
    [40]
    WAHL D E, EICHEL P H, GHIGLIA D C, et al. Phase gradient autofocus-a robust tool for high resolution SAR phase correction[J]. IEEE Transactions on Aerospace and Electronic Systems, 1994, 30(3): 827–835. doi: 10.1109/7.303752.
    [41]
    DUAN Yu, WANG Yahui, ZHOU Zhuo, et al. Joint optimal selection of imaging time interval and imaging projection plane based on short-times fraction Fourier transform for bistatic SAR maritime ship target imaging[C]. 2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, USA, 2023: 8130–8133. doi: 10.1109/IGARSS52108.2023.10283218.
    [42]
    CAO Rui, WANG Yong, YEH C, et al. A novel optimal time window determination approach for ISAR imaging of ship targets[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 3475–3503. doi: 10.1109/JSTARS.2022.3161204.
  • Relative Articles

    [1]ZHANG Qiang, WANG Zhihao, WANG Xueqian, LI Gang, HUANG Liwei, SONG Huina, SONG Zhaohui. Cooperative Detection of Ships in Optical and SAR Remote Sensing Images Based on Neighborhood Saliency[J]. Journal of Radars, 2024, 13(4): 885-903. doi: 10.12000/JR24037
    [2]LI Zhongyu, GUI Liang, HAI Yu, WU Junjie, WANG Dangwei, WANG Anle, YANG Jianyu. Ultrahigh-resolution ISAR Micro-Doppler Suppression Methodology Based on Variational Mode Decomposition and Mode Optimization[J]. Journal of Radars, 2024, 13(4): 852-865. doi: 10.12000/JR24043
    [3]HU Zhanyi. A Note on Visual Semantics in SAR 3D Imaging[J]. Journal of Radars, 2022, 11(1): 20-26. doi: 10.12000/JR21149
    [4]WANG Bingnan, ZHAO Juanying, LI Wei, SHI Ruihua, XIANG Maosheng, ZHOU Yu, JIA Jianjun. Array Synthetic Aperture Ladar with High Spatial Resolution Technology[J]. Journal of Radars, 2022, 11(6): 1110-1118. doi: 10.12000/JR22204
    [5]AN Hongyang, SUN Zhichao, WANG Chaodong, WU Junjie, YANG Jianyu. Unambiguous Imaging Method for GEO-LEO Bistatic SAR Based on Joint Sequential Multiframe and Multichannel Receiving Recovery[J]. Journal of Radars, 2022, 11(3): 376-385. doi: 10.12000/JR21133
    [6]ZENG Tao, WEN Yuhan, WANG Yan, DING Zegang, WEI Yangkai, YUAN Tiaotiao. Research Progress on Synthetic Aperture Radar Parametric Imaging Methods(in English)[J]. Journal of Radars, 2021, 10(3): 327-341. doi: 10.12000/JR21004
    [7]LUO Ying, NI Jiacheng, ZHANG Qun. Synthetic Aperture Radar Learning-imaging Method Based onData-driven Technique and Artificial Intelligence[J]. Journal of Radars, 2020, 9(1): 107-122. doi: 10.12000/JR19103
    [8]TIAN Biao, LIU Yang, HU Pengjiang, WU Wenzhen, XU Shiyou, CHEN Zengping. Review of High-resolution Imaging Techniques of Wideband Inverse Synthetic Aperture Radar[J]. Journal of Radars, 2020, 9(5): 765-802. doi: 10.12000/JR20060
    [9]WANG Xuesong, CHEN Siwei. Polarimetric Synthetic Aperture Radar Interpretation and Recognition: Advances and Perspectives[J]. Journal of Radars, 2020, 9(2): 259-276. doi: 10.12000/JR19109
    [10]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [11]XING Mengdao, LIN Hao, CHEN Jianlai, SUN Guangcai, YAN Bangbang. A Review of Imaging Algorithms in Multi-platform-borne Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 732-757. doi: 10.12000/JR19102
    [12]ZHU Daiyin, ZHANG Ying, YU Xiang, MAO Xinhua, ZHANG Jindong, LI Yong. Imaging Signal Processing Technology for Miniature Synthetic Aperture Radar[J]. Journal of Radars, 2019, 8(6): 793-803. doi: 10.12000/JR19094
    [13]Chen Xiaolong, Guan Jian, He You, Yu Xiaohan. High-resolution Sparse Representation and Its Applications in Radar Moving Target Detection[J]. Journal of Radars, 2017, 6(3): 239-251. doi: 10.12000/JR16110
    [14]Zhang Keshu, Pan Jie, Wang Ran, Li Guangzuo, Wang Ning, Wu Yirong. Study of Wide Swath Synthetic Aperture Ladar Imaging Techology[J]. Journal of Radars, 2017, 6(1): 1-10. doi: 10.12000/JR16152
    [15]Zhou Yejian, Zhang Lei, Wang Hongxian, Xing Mengdao. Performance Analysis on ISAR Imaging of Space Targets[J]. Journal of Radars, 2017, 6(1): 17-24. doi: 10.12000/JR16136
    [16]Jin Tian. An Enhanced Imaging Method for Foliage Penetration Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(5): 503-508. doi: 10.12000/JR15114
    [17]He Feng, Yang Yang, Dong Zhen, Liang Dian-nong. Progress and Prospects of Curvilinear SAR 3-D Imaging[J]. Journal of Radars, 2015, 4(2): 130-135. doi: 10.12000/JR14119
    [18]Wu Yi-rong. Concept on Multidimensional Space Joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047
    [19]Zeng Tao. Bistatic SAR: State of the Art and Development Trend[J]. Journal of Radars, 2012, 1(4): 329-341. doi: 10.3724/SP.J.1300.2012.20093
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.4 %FULLTEXT: 12.4 %META: 74.0 %META: 74.0 %PDF: 13.6 %PDF: 13.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.0 %其他: 10.0 %其他: 0.6 %其他: 0.6 %China: 0.6 %China: 0.6 %上海: 2.4 %上海: 2.4 %内江: 0.6 %内江: 0.6 %北京: 9.1 %北京: 9.1 %十堰: 0.6 %十堰: 0.6 %南京: 0.9 %南京: 0.9 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.3 %呼和浩特: 0.3 %哥伦布: 1.2 %哥伦布: 1.2 %天津: 3.2 %天津: 3.2 %安康: 0.9 %安康: 0.9 %安阳: 0.3 %安阳: 0.3 %宣城: 0.3 %宣城: 0.3 %常州: 0.3 %常州: 0.3 %平顶山: 0.3 %平顶山: 0.3 %广州: 1.2 %广州: 1.2 %开封: 0.3 %开封: 0.3 %弗吉: 0.3 %弗吉: 0.3 %张家口: 3.2 %张家口: 3.2 %张家界: 0.3 %张家界: 0.3 %成都: 11.2 %成都: 11.2 %扬州: 2.1 %扬州: 2.1 %新加坡: 1.2 %新加坡: 1.2 %昆明: 4.4 %昆明: 4.4 %杭州: 1.8 %杭州: 1.8 %武汉: 0.3 %武汉: 0.3 %沧州: 0.3 %沧州: 0.3 %济南: 0.6 %济南: 0.6 %深圳: 0.9 %深圳: 0.9 %温州: 1.5 %温州: 1.5 %漯河: 8.3 %漯河: 8.3 %石家庄: 2.4 %石家庄: 2.4 %纽约: 0.6 %纽约: 0.6 %聊城: 0.3 %聊城: 0.3 %芒廷维尤: 8.8 %芒廷维尤: 8.8 %芝加哥: 0.3 %芝加哥: 0.3 %衡水: 0.3 %衡水: 0.3 %襄阳: 0.3 %襄阳: 0.3 %西宁: 1.5 %西宁: 1.5 %西安: 3.5 %西安: 3.5 %邯郸: 1.5 %邯郸: 1.5 %郑州: 0.9 %郑州: 0.9 %重庆: 1.5 %重庆: 1.5 %长沙: 2.7 %长沙: 2.7 %青岛: 5.6 %青岛: 5.6 %其他其他China上海内江北京十堰南京合肥呼和浩特哥伦布天津安康安阳宣城常州平顶山广州开封弗吉张家口张家界成都扬州新加坡昆明杭州武汉沧州济南深圳温州漯河石家庄纽约聊城芒廷维尤芝加哥衡水襄阳西宁西安邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(250) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint