Loading [MathJax]/jax/output/SVG/jax.js
Si Qi, Wang Yu, Deng Yunkai, Li Ning, Zhang Heng. A Novel Cluster-Analysis Algorithm Based on MAP Framework for Multi-baseline InSAR Height Reconstruction[J]. Journal of Radars, 2017, 6(6): 640-652. doi: 10.12000/JR17043
Citation: JIAN Tao, MA Yingliang, WANG Haipeng, et al. Adaptive screening approach of training data with an unknown number of outliers[J]. Journal of Radars, 2024, 13(5): 1049–1060. doi: 10.12000/JR24135

Adaptive Screening Approach of Training Data with an Unknown Number of Outliers

DOI: 10.12000/JR24135 CSTR: 32380.14.JR24135
Funds:  The National Natural Science Foundation of China (62471483, 61971432), Taishan Scholars Project Special Funding (tsqn201909156), Shandong Provincial Youth Innovation Science and Technology Support Program for Colleges and Universities (2019KJN031)
More Information
  • Corresponding author: JIAN Tao, work_jt@163.com
  • Received Date: 2024-07-04
  • Rev Recd Date: 2024-08-17
  • Available Online: 2024-08-19
  • Publish Date: 2024-09-19
  • In multichannel adaptive radar target detection, diverse nonhomogeneous background factors can cause considerable outlier interference, making it challenging to meet the requirements of independent and identically distributed training data. Current methods for screening training data rely on prior knowledge of the number of outliers, often leading to poor performance in real-world scenarios where this number is usually unknown. This paper addresses these issues by focusing on adaptive training data screening when the number of outliers is unknown. First, the outlier set is estimated using maximum likelihood estimation, assuming known covariance matrices of clutter and noise. In particular, the training data is initially ranked based on the generalized inner product of each range cell data, approximately transforming the maximum likelihood estimation of the outlier set to the estimation of the number of outliers. Second, a fast maximum likelihood estimation algorithm is employed to calculate the unknown covariance matrix, and an adaptive screening approach is designed for scenarios with an unspecified number of outliers. Furthermore, to address the adverse effects of outliers on ranking performance, a normalized generalized inner product form is devised utilizing the normalized sampling covariance matrix. This form is subsequently incorporated into an iterative estimation procedure to improve the adaptive screening accuracy of training data. Simulation results demonstrate that the screening accuracy of the normalized generalized inner product exceeds that of the generalized inner product. Moreover, through even a small number of reiterations, maintaining a consistent enhancement in terms of the Normalized Signal-to-Interference Ratio (NSIR) is still possible. Compared with existing methods, the proposed algorithm considerably improves screening performance, especially when the number of outliers is unknown.

     

  • [1]
    王永良, 刘维建, 谢文冲, 等. 机载雷达空时自适应检测方法研究进展[J]. 雷达学报, 2014, 3(2): 201–207. doi: 10.3724/SP.J.1300.2014.13081.

    WANG Yongliang, LIU Weijian, XIE Wenchong, et al. Research progress of space-time adaptive detection for airborne radar[J]. Journal of Radars, 2014, 3(2): 201–207. doi: 10.3724/SP.J.1300.2014.13081.
    [2]
    李海, 刘新龙, 周盟, 等. 基于修正自适应匹配滤波器的机动目标检测方法[J]. 雷达学报, 2015, 4(5): 552–559. doi: 10.12000/JR15105.

    LI Hai, LIU Xinlong, ZHOU Meng, et al. Detection of maneuvering target based on modified AMF[J]. Journal of Radars, 2015, 4(5): 552–559. doi: 10.12000/JR15105.
    [3]
    DUAN Jia, WU Yifeng, DENG Xiaobo, et al. Robust clutter suppression in heterogeneous environments based on multi frames and similarities[J]. Multidimensional Systems and Signal Processing, 2022, 33(1): 167–180. doi: 10.1007/s11045-021-00792-x.
    [4]
    LU Shuping, YI Wei, LIU Weijian, et al. Data-dependent clustering-CFAR detector in heterogeneous environment[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 476–485. doi: 10.1109/TAES.2017.2740065.
    [5]
    高永婵, 潘丽燕, 李亚超, 等. 空/时对称阵列雷达非高斯杂波背景下多秩距离扩展目标检测方法[J]. 雷达学报, 2022, 11(5): 765–777. doi: 10.12000/JR22013.

    GAO Yongchan, PAN Liyan, LI Yachao, et al. Multi-rank range-spread target detection method for space/time symmetric array radar under non-Gaussian clutter background[J]. Journal of Radars, 2022, 11(5): 765–777. doi: 10.12000/JR22013.
    [6]
    简涛, 王哲昊, 王海鹏, 等. 基于损失加权修正的舰船目标HRRP小样本元学习识别方法[J]. 信号处理, 2022, 38(12): 2460–2468. doi: 10.16798/j.issn.1003-0530.2022.12.002.

    JIAN Tao, WANG Zhehao, WANG Haipeng, et al. Ship target HRRP meta-learning recognition with small samples based on loss weighted correction[J]. Journal of Signal Processing, 2022, 38(12): 2460–2468. doi: 10.16798/j.issn.1003-0530.2022.12.002.
    [7]
    ZHANG Xinying and WANG Tong. A novel training samples selection method for space-time adaptive processing[C]. The 4th International Conference on Electronic Engineering and Informatics, Guiyang, China, 2022: 1–4.
    [8]
    GUO Qiang, LIU Lichao, KALIUZHNYI M, et al. STAP training samples selection based on GIP and volume cross correlation[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4028205. doi: 10.1109/LGRS.2022.3218670.
    [9]
    MELVIN W L, WICKS M C, and BROWN R D. Assessment of multichannel airborne radar measurements for analysis and design of space-time processing architectures and algorithms[C]. The 1996 IEEE National Radar Conference, Ann Arbor, USA, 1996: 130–135. doi: 10.1109/NRC.1996.510669.
    [10]
    MELVIN W L and WICKS M C. Improving practical space-time adaptive radar[C]. The 1997 IEEE National Radar Conference, Syracuse, USA, 1997: 48–53. doi: 10.1109/NRC.1997.588124.
    [11]
    GERLACH K. Outlier resistant adaptive matched filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 885–901. doi: 10.1109/TAES.2002.1039406.
    [12]
    CONTE E, DE MAIO A, FARINA A, et al. Design and analysis of a knowledge-aided radar detector for Doppler processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1058–1079. doi: 10.1109/TAES.2006.248200.
    [13]
    HAN Sudan, DE MAIO A, CAROTENUTO V, et al. Censoring outliers in radar data: An approximate ML approach and its analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2019, 55(2): 534–546. doi: 10.1109/TAES.2018.2852418.
    [14]
    KARBASI S M. Joint likelihood estimation and model order selection for outlier censoring[J]. IET Radar, Sonar & Navigation, 2021, 15(6): 561–573. doi: 10.1049/rsn2.12072.
    [15]
    STEINER M and GERLACH K. Fast converging adaptive processor or a structured covariance matrix[J]. IEEE Transactions on Aerospace and Electronic Systems, 2000, 36(4): 1115–1126. doi: 10.1109/7.892662.
    [16]
    YANG Xiaopeng, LIU Yongxu, and LONG Teng. Robust non-homogeneity detection algorithm based on prolate spheroidal wave functions for space-time adaptive processing[J]. IET Radar, Sonar & Navigation, 2013, 7(1): 47–54. doi: 10.1049/iet-rsn.2011.0404.
    [17]
    CONTE E, LOPS M, and RICCI G. Adaptive detection schemes in compound-Gaussian clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(4): 1058–1069. doi: 10.1109/7.722671.
    [18]
    REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893.
    [19]
    LI Zhihui, LIU Hanwei, ZHANG Yongshun, et al. Robust nonhomogeneous training samples detection method for space-time adaptive processing radar using sparse-recovery with knowledge-aided[J]. Journal of Applied Remote Sensing, 2017, 11(4): 045013. doi: 10.1117/1.JRS.11.045013.
  • Relative Articles

    [1]WU Yun, ZHANG Dongheng, ZHANG Ganlin, XIE Xuecheng, ZHAN Fengquan, CHEN Yan. WiFi-based Respiration Detection Aided by Intelligent Reflecting Surfaces[J]. Journal of Radars, 2025, 14(1): 189-203. doi: 10.12000/JR24105
    [2]SHAO Hui, ZHANG Hulong, DAI Hui, CHEN Yuwei, SUN Long, XU Heng, LI Xingyun. Fast Reflectance Spectral Profile Reconstruction Method for Full-waveform Hyperspectral LiDAR[J]. Journal of Radars. doi: 10.12000/JR24214
    [3]XU Heng, XU Hong, QUAN Yinghui, PAN Qin, SHA Minghui, CHEN Hui, CHENG Qiang, ZHOU Xiaoyang. A Radar Jamming Method Based on Time Domain Coding Metasurface Intrapulse and Interpulse Coding Optimization[J]. Journal of Radars, 2024, 13(1): 215-226. doi: 10.12000/JR23186
    [4]LI Haoliang, CHEN Siwei. Electromagnetic Scattering Characteristics and Radar Identification of Sea Corner Reflectors: Advances and Prospects[J]. Journal of Radars, 2023, 12(4): 738-761. doi: 10.12000/JR23100
    [5]TIAN Tuanwei, DENG Hao, LU Jianhua, DU Xiaolin. Multicarrier Waveform Optimization Method for an Intelligent Reflecting Surface-assisted Dual-function Radar-communication System[J]. Journal of Radars, 2022, 11(2): 240-254. doi: 10.12000/JR21138
    [6]WANG Fulai, PANG Chen, YIN Jiapeng, LI Nanjun, LI Yongzhen, WANG Xuesong. Joint Design of Doppler-tolerant Complementary Sequences and Receiving Filters Against Interrupted Sampling Repeater Jamming[J]. Journal of Radars, 2022, 11(2): 278-288. doi: 10.12000/JR22020
    [7]WAN Huan, YU Xianxiang, QUAN Zhi, LIAO Bin. Constant Modulus Waveform Design for Low-resolution Quantization MIMO Radar Based on an Alternating Direction Penalty Method[J]. Journal of Radars, 2022, 11(4): 557-569. doi: 10.12000/JR22072
    [8]SHI Hongyu, LI Guoqiang, LIU Kang, LI Bolin, YI Jianjia, ZHANG Anxue, XU Zhuo. Deflective Vortex Beam Generation Based on Metasurfaces in the Terahertz Band[J]. Journal of Radars, 2021, 10(5): 785-793. doi: 10.12000/JR21070
    [9]FANG Zuqi, CHENG Qiang, CUI Tiejun. Nonlinear Quasi-Bessel Beam Generation Based on the Time-domain Digital-Coding Metasurface[J]. Journal of Radars, 2021, 10(2): 267-273. doi: 10.12000/JR21043
    [10]WANG Zhihao, LI Gang, JIANG Xiao. Flooded Area Detection Method Based on Fusion of Optical and SAR Remote Sensing Images[J]. Journal of Radars, 2020, 9(3): 539-553. doi: 10.12000/JR19095
    [11]LI Daojing, ZHU Yu, HU Xuan, YU Haifeng, ZHOU Kai, ZHANG Running, LIU Lei. Laser Application and Sparse Imaging Analysis of Diffractive Optical System[J]. Journal of Radars, 2020, 9(1): 195-203. doi: 10.12000/JR19081
    [12]Li Daojing, Hu Xuan. Optical System and Detection Range Analysis of Synthetic Aperture Ladar[J]. Journal of Radars, 2018, 7(2): 263-274. doi: 10.12000/JR18017
    [13]Yin De, Ye Shengbo, Liu Jinwei, Ji Yicai, Liu Xiaojun, Fang Guangyou. Novel Time-domain Ultra-wide Band TEM Horn Antenna for Highway GPR Applications[J]. Journal of Radars, 2017, 6(6): 611-618. doi: 10.12000/JR17004
    [14]Du Lan, Li Lin-sen, Li Wei-lu, Wang Bao-shuai, Shi Hui-ruo. Aircraft Target Classification Based on Correlation Features from Time-domain Echoes[J]. Journal of Radars, 2015, 4(6): 621-629. doi: 10.12000/JR15117
    [15]Wu Bing-heng, Ji Yi-cai, Fang Guang-you. Design and Analysis of the Distributed Resistor-loading GPR Antenna with Reflected Cavity[J]. Journal of Radars, 2015, 4(5): 538-544. doi: 10.12000/JR15070
    [16]Wei Ming-gui, Liang Da-chuan, Gu Jian-qiang, Min Rui, Li Jin, Ouyang Chun-mei, Tian Zhen, He Ming-xia, Han Jia-guang, Zhang Wei-li. Terahertz Radar Imaging Based on Time-domain Spectroscopy[J]. Journal of Radars, 2015, 4(2): 222-229. doi: 10.12000/JR14125
    [17]Huang Zhi-rong, Zheng Shi-kun, Zhu Jia-long, Chen Guo-ding. Design Optimization of Expansion Driven Components for the HJ-1-C Satellite[J]. Journal of Radars, 2014, 3(3): 282-287. doi: 10.3724/SP.J.1300.2014.14016
    [18]Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
    [19]You Hong-jian, Hu Yan-feng. Investigation on Fine Registration for SAR and Optical Image[J]. Journal of Radars, 2014, 3(1): 78-84. doi: 10.3724/SP.J.1300.2014.13154
    [20]Llin Shi-bin, Li Yue-li, Yan Shao-shi, Zhou Zhi-min. Study of Effects of Flat Surface Assumption to Synthetic Aperture Radar Time-domain Algorithms Imaging Quality[J]. Journal of Radars, 2012, 1(3): 309-313. doi: 10.3724/SP.J.1300.2012.20035
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.4 %FULLTEXT: 20.4 %META: 69.8 %META: 69.8 %PDF: 9.7 %PDF: 9.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.6 %其他: 15.6 %其他: 0.3 %其他: 0.3 %China: 1.2 %China: 1.2 %India: 0.0 %India: 0.0 %Keelung: 0.0 %Keelung: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.1 %United States: 0.1 %[]: 1.0 %[]: 1.0 %三亚: 0.0 %三亚: 0.0 %三明: 0.0 %三明: 0.0 %上海: 0.4 %上海: 0.4 %东莞: 0.1 %东莞: 0.1 %中卫: 0.2 %中卫: 0.2 %中山: 0.0 %中山: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.1 %保定: 0.1 %包头: 0.0 %包头: 0.0 %北京: 14.7 %北京: 14.7 %北京市: 0.0 %北京市: 0.0 %十堰: 0.0 %十堰: 0.0 %南京: 0.2 %南京: 0.2 %南宁: 0.0 %南宁: 0.0 %南昌: 0.0 %南昌: 0.0 %厦门: 0.0 %厦门: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.2 %合肥: 0.2 %吉安: 0.0 %吉安: 0.0 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸阳: 0.0 %咸阳: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉义: 0.1 %嘉义: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %圣地亚哥库特拉尔潘: 0.1 %圣地亚哥库特拉尔潘: 0.1 %大连: 0.1 %大连: 0.1 %天津: 0.2 %天津: 0.2 %太原: 0.0 %太原: 0.0 %宁波: 0.2 %宁波: 0.2 %安康: 0.1 %安康: 0.1 %安阳: 0.1 %安阳: 0.1 %宜春: 0.0 %宜春: 0.0 %宣城: 0.0 %宣城: 0.0 %密蘇里城: 0.0 %密蘇里城: 0.0 %巴中: 0.2 %巴中: 0.2 %巴中市巴州区: 0.0 %巴中市巴州区: 0.0 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %巴音郭楞: 0.0 %巴音郭楞: 0.0 %广州: 0.3 %广州: 0.3 %张家口: 1.0 %张家口: 1.0 %张家口市: 0.0 %张家口市: 0.0 %德宏: 0.0 %德宏: 0.0 %成都: 0.5 %成都: 0.5 %成都市新都区: 0.0 %成都市新都区: 0.0 %扬州: 0.2 %扬州: 0.2 %新加坡: 0.0 %新加坡: 0.0 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %普洱: 0.0 %普洱: 0.0 %杭州: 1.5 %杭州: 1.5 %枣庄: 0.0 %枣庄: 0.0 %格兰特县: 0.1 %格兰特县: 0.1 %桂林: 0.0 %桂林: 0.0 %梅州: 0.0 %梅州: 0.0 %武汉: 0.3 %武汉: 0.3 %永州: 0.0 %永州: 0.0 %汉中: 0.1 %汉中: 0.1 %汕头: 0.0 %汕头: 0.0 %沈阳: 0.2 %沈阳: 0.2 %洛杉矶: 0.0 %洛杉矶: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.2 %济南: 0.2 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.1 %温州: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.0 %漳州: 0.0 %烟台: 0.0 %烟台: 0.0 %焦作: 0.0 %焦作: 0.0 %牡丹江: 0.0 %牡丹江: 0.0 %玉林: 0.2 %玉林: 0.2 %白银: 0.2 %白银: 0.2 %盐城: 0.1 %盐城: 0.1 %盘锦: 0.0 %盘锦: 0.0 %石家庄: 0.9 %石家庄: 0.9 %石家庄市: 0.2 %石家庄市: 0.2 %纽约: 0.1 %纽约: 0.1 %绍兴: 0.0 %绍兴: 0.0 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 0.6 %芝加哥: 0.6 %芬兰赫尔辛基: 0.1 %芬兰赫尔辛基: 0.1 %苏州: 0.1 %苏州: 0.1 %荆州: 0.1 %荆州: 0.1 %莆田: 0.0 %莆田: 0.0 %萍乡: 0.0 %萍乡: 0.0 %蚌埠: 0.0 %蚌埠: 0.0 %襄阳: 0.0 %襄阳: 0.0 %西宁: 34.2 %西宁: 34.2 %西安: 0.3 %西安: 0.3 %诺沃克: 0.1 %诺沃克: 0.1 %贵港: 0.2 %贵港: 0.2 %赤峰: 0.0 %赤峰: 0.0 %达州: 0.0 %达州: 0.0 %运城: 0.4 %运城: 0.4 %遵义: 0.0 %遵义: 0.0 %郑州: 0.1 %郑州: 0.1 %重庆: 0.3 %重庆: 0.3 %重庆市: 0.0 %重庆市: 0.0 %银川: 0.0 %银川: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 0.4 %长沙: 0.4 %长治: 0.0 %长治: 0.0 %青岛: 0.2 %青岛: 0.2 %韶关: 0.0 %韶关: 0.0 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %鹤岗: 0.0 %鹤岗: 0.0 %龙岩: 0.1 %龙岩: 0.1 %其他其他ChinaIndiaKeelungTaiwan, ChinaUnited States[]三亚三明上海东莞中卫中山临汾丹东佛山保定包头北京北京市十堰南京南宁南昌厦门台北台州台湾省合肥吉安呼和浩特咸阳哥伦布嘉义嘉兴圣地亚哥库特拉尔潘大连天津太原宁波安康安阳宜春宣城密蘇里城巴中巴中市巴州区巴彦淖尔巴音郭楞广州张家口张家口市德宏成都成都市新都区扬州新加坡无锡昆明晋城普洱杭州枣庄格兰特县桂林梅州武汉永州汉中汕头沈阳洛杉矶洛阳济南海口淄博淮南淮安深圳温州湖州湘潭滨州漯河漳州烟台焦作牡丹江玉林白银盐城盘锦石家庄石家庄市纽约绍兴美国伊利诺斯芝加哥芒廷维尤芝加哥芬兰赫尔辛基苏州荆州莆田萍乡蚌埠襄阳西宁西安诺沃克贵港赤峰达州运城遵义郑州重庆重庆市银川长春长沙长治青岛韶关香港香港特别行政区鹤岗龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(372) PDF downloads(268) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint