WANG Xuesong and CHEN Siwei. Polarimetric synthetic aperture radar interpretation and recognition: Advances and perspectives[J]. Journal of Radars, 2020, 9(2): 259–276. doi: 10.12000/JR19109
Citation: PAN Haoran, MA Hui, HU Dunfa, et al. Novel forward-looking three-dimensional imaging based on vortex electromagnetic wave radar[J]. Journal of Radars, 2024, 13(5): 1109–1122. doi: 10.12000/JR24123

Novel Forward-looking Three-dimensional Imaging Based on Vortex Electromagnetic Wave Radar

DOI: 10.12000/JR24123 CSTR: 32380.14.JR24123
Funds:  The National Key R&D Program of China (2022YFB3902400), The National Natural Science Foundation of China under Grant (62471362), The National Nature Fund Youth Fund (61901344), The Postdoctoral Innovative Talent Support Program (BX20180239), The Postdoctoral Fund (2019M653562), The Discipline Innovation and Talent Introduction Program of Colleges and Universities (B18039)
More Information
  • Corresponding author: MA Hui, h.ma@xidian.edu.cn
  • Received Date: 2024-06-19
  • Rev Recd Date: 2024-09-02
  • Available Online: 2024-09-06
  • Publish Date: 2024-09-23
  • Vortex Electromagnetic Waves (VEMWs) have unique wavefront phase modulation characteristics. As a new degree of freedom in the diversity of radar transmitters, the VEMW Radar (VEMWR) provides Radar Cross-Section (RCS) diversity and improves signal and information processing dimensions and performances. The detection and imaging performances of VEMWR have been verified in various radar systems. This article focuses on the applying background of forward-looking radar imaging and proposes a time-division multiplemode scanning imaging method based on a Uniform Circular Array (UCA) system with multiple transmitters and a single receiver at the UCA center. First, we establish the forward-looking VEMWR imaging mode and corresponding signal mode. Next, an improved three-Dimensional (3D) back-projection and range-Doppler algorithm is proposed, which utilizes the magnitude difference at various elevation angles of multimode VEMW, phase difference at different azimuth angles, and Doppler effect resulting from the relative motion of the radar and target to achieve 3D imaging of the target. As the elevation angle increases, the beam pattern gain of the high-mode VEMW decreases sharply due to the energy divergence of the VEMW. The proposed method can maintain stability at low or high elevation angles using the energy distribution of multiple modes in the spatial domain. Imaging results of point targets revealed that the normalized gain of target-imaging results is equivalent either at low or high elevation angles within the multimode VEMW field of view. The proposed method is validated through experiments with an aircraft target. Based on the imaging results, it is verified that the proposed method can accurately reconstruct the 3D structure of complex targets.

     

  • [1]
    SUN Guangcai, XING Mengdao, XIA Xianggen, et al. Multichannel full-aperture azimuth processing for beam steering SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(9): 4761–4778. doi: 10.1109/TGRS.2012.2230267.
    [2]
    宗竹林, 胡剑浩, 朱立东, 等. 编队卫星合成孔径雷达空时二维压缩感知成像[J]. 电波科学学报, 2012, 27(3): 626–636.

    ZONG Zhulin, HU Jianhao, ZHU Lidong, et al. Formation-flying small satellites SAR imaging algorithm using space-time compressive sensing[J]. Chinese Journal of Radio Science, 2012, 27(3): 626–636.
    [3]
    YANIK M E, WANG Dan, and TORLAK M. Development and demonstration of MIMO-SAR mmWave imaging testbeds[J]. IEEE Access, 2020, 8: 126019–126038. doi: 10.1109/ACCESS.2020.3007877.
    [4]
    YAO A M and PADGETT M J. Orbital angular momentum: Origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161–204. doi: 10.1364/AOP.3.000161.
    [5]
    ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review Applied, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185.
    [6]
    LIU Kang, LI Xiang, GAO Yue, et al. Microwave imaging of spinning object using orbital angular momentum[J]. Journal of Applied Physics, 2017, 122(12): 124903. doi: 10.1063/1.4991655.
    [7]
    吕坤, 马晖, 刘宏伟. 基于涡旋电磁波体制的三维SAR成像方法[J]. 雷达学报, 2021, 10(5): 691–698. doi: 10.12000/JR21125.

    LYU Kun, MA Hui, and LIU Hongwei. Three-dimensional imaging using the electromagnetic vortex synthetic aperture radar[J]. Journal of Radars, 2021, 10(5): 691–698. doi: 10.12000/JR21125.
    [8]
    GONG Ting, CHENG Yongqiang, LI Xiang, et al. Micromotion detection of moving and spinning object based on rotational Doppler shift[J]. IEEE Microwave and Wireless Components Letters, 2018, 28(9): 843–845. doi: 10.1109/LMWC.2018.2858552.
    [9]
    王建秋, 刘康, 王煜, 等. 涡旋电磁波雷达成像分辨力研究[J]. 雷达学报, 2021, 10(5): 680–690. doi: 10.12000/JR21054.

    WANG Jianqiu, LIU Kang, WANG Yu, et al. Resolution analysis of vortex electromagnetic radar imaging[J]. Journal of Radars, 2021, 10(5): 680–690. doi: 10.12000/JR21054.
    [10]
    郭桂蓉, 胡卫东, 杜小勇. 基于电磁涡旋的雷达目标成像[J]. 国防科技大学学报, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013.

    GUO Guirong, HU Weidong, and DU Xiaoyong. Electromagnetic vortex based radar target imaging[J]. Journal of National University of Defense Technology, 2013, 35(6): 71–76. doi: 10.3969/j.issn.1001-2486.2013.06.013.
    [11]
    BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Implementation of vortex electromagnetic waves high-resolution synthetic aperture radar imaging[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(5): 764–767. doi: 10.1109/LAWP.2018.2814980.
    [12]
    JIANG Xuefeng, ZHAO Yufei, and ZHANG Chao. Capacity evaluation on the long-distance orbital angular momentum non-orthogonal transmission[C]. 2018 IEEE MTT-S International Wireless Symposium (IWS), Chengdu, China, 2018: 1–4. doi: 10.1109/IEEE-IWS.2018.8400839.
    [13]
    FANG Yue, CHEN Jie, WANG Pengbo, et al. A novel image formation method for electromagnetic vortex SAR with orbital-angular-momentum[J]. Progress in Electromagnetics Research M, 2019, 82: 129–137. doi: 10.2528/PIERM19011704.
    [14]
    BU Xiangxi, ZHANG Zhuo, CHEN Longyong, et al. Synthetic aperture radar interferometry based on vortex electromagnetic waves[J]. IEEE Access, 2019, 7: 82693–82700. doi: 10.1109/ACCESS.2019.2908209.
    [15]
    袁航, 倪嘉成, 荣楠, 等. 基于单频涡旋电磁波雷达的人体目标步态精细识别[J]. 空军工程大学学报(自然科学版), 2020, 21(6): 39–45. doi: 10.3969/j.issn.1009-3516.2020.06.007.

    YUAN Hang, NI Jiacheng, RONG Nan, et al. Fine gait recognition of human target with single-frequency vortex electromagnetic wave radar[J]. Journal of Air Force Engineering University (Natural Science Edition), 2020, 21(6): 39–45. doi: 10.3969/j.issn.1009-3516.2020.06.007.
    [16]
    WANG Zhaji, SUN Guanqun, ZHANG Fangzheng, et al. Microwave-photonics-based vortex electromagnetic wave generation for high resolution radar imaging[C]. 2022 Asia Communications and Photonics Conference (ACP), Shenzhen, China, 2022: 1687–1690. doi: 10.1109/ACP55869.2022.10088880.
    [17]
    MA Hui and LIU Hongwei. Waveform diversity-based generation of convergent beam carrying orbital angular momentum[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(7): 5487–5495. doi: 10.1109/TAP.2020.2981724.
    [18]
    袁铁柱. 涡旋电磁波在雷达成像中的应用研究[D]. [博士论文], 国防科学技术大学, 2017.

    YUAN Tiezhu. Research on radar imaging using electromagnetic vortex wave[D]. [Ph.D. dissertation], National University of Defense Technology, 2017.
    [19]
    LIU Kang, CHENG Yongqiang, GAO Yue, et al. Super-resolution radar imaging based on experimental OAM beams[J]. Applied Physics Letters, 2017, 110(16): 164102. doi: 10.1063/1.4981253.
    [20]
    WANG Jianqiu, LIU Kang, LIU Hongyan, et al. 3-D object imaging method with electromagnetic vortex[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 2000512. doi: 10.1109/TGRS.2021.3069914.
  • Relative Articles

    [1]YIN Junjun, LUO Jiahao, LI Xiang, DAI Xiaokang, YANG Jian. Ship Detection Based on Polarimetric SAR Gradient and Complex Wishart Classifier[J]. Journal of Radars, 2024, 13(2): 396-410. doi: 10.12000/JR23198
    [2]DING Jinshan, ZHONG Chao, WEN Liwu, XU Zhong. Joint Detection of Moving Target in Video Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(3): 313-323. doi: 10.12000/JR22036
    [3]WANG Jingjing, LIU Zheng, XIE Rong, RAN Lei. HRRP Target Recognition Method for Full Polarimetric Radars by Combining Cameron Decomposition and Fusing RKELM[J]. Journal of Radars, 2021, 10(6): 944-955. doi: 10.12000/JR21099
    [4]LIU Tao, YANG Ziyuan, JIANG Yanni, GAO Gui. Review of Ship Detection in Polarimetric Synthetic Aperture Imagery (in English)[J]. Journal of Radars, 2021, 10(1): 1-19. doi: 10.12000/JR20155
    [5]QUAN Sinong, FAN Hui, DAI Dahai, WANG Wei, XIAO Shunping, WANG Xuesong. Recognition of Ships and Chaff Clouds Based on Sophisticated Polarimetric Target Decomposition[J]. Journal of Radars, 2021, 10(1): 61-73. doi: 10.12000/JR20123
    [6]CUI Xingchao, SU Yi, CHEN Siwei. Polarimetric SAR Ship Detection Based on Polarimetric Rotation Domain Features and Superpixel Technique[J]. Journal of Radars, 2021, 10(1): 35-48. doi: 10.12000/JR20147
    [7]PANG Lei, ZHANG Fengli, WANG Guojun, LIU Na, SHAO Yun, ZHANG Jiameng, ZHAO Yuchuan, PANG Lei. Imaging Simulation and Damage Assessment Feature Analysis of Ku Band Polarized SAR of Buildings[J]. Journal of Radars, 2020, 9(3): 578-587. doi: 10.12000/JR20061
    [8]WEI Yangkai, ZENG Tao, CHEN Xinliang, DING Zegang, FAN Yujie, WEN Yuhan. Parametric SAR Imaging for Typical Lines and Surfaces[J]. Journal of Radars, 2020, 9(1): 143-153. doi: 10.12000/JR19077
    [9]Zhou Yejian, Zhang Lei, Wang Hongxian, Xing Mengdao. Performance Analysis on ISAR Imaging of Space Targets[J]. Journal of Radars, 2017, 6(1): 17-24. doi: 10.12000/JR16136
    [10]Yang Wen, Zhong Neng, Yan Tianheng, Yang Xiangli. Classification of Polarimetric SAR Images Based on the Riemannian Manifold[J]. Journal of Radars, 2017, 6(5): 433-441. doi: 10.12000/JR17031
    [11]Tao Chensong, Chen Siwei, Li Yongzhen, Xiao Shunping. Polarimetric SAR Terrain Classification Using Polarimetric Features Derived from Rotation Domain[J]. Journal of Radars, 2017, 6(5): 524-532. doi: 10.12000/JR16131
    [12]Chen Siwei, Li Yongzhen, Wang Xuesong, Xiao Shunping. Polarimetric SAR Target Scattering Interpretation in Rotation Domain: Theory and Application[J]. Journal of Radars, 2017, 6(5): 442-455. doi: 10.12000/JR17033
    [13]Zhang Jingjing, Hong Wen, Yin Qiang. Robust Distributed-target-based Calibration Method for Polarimetric SAR Using Spherically Truncated Covariance Matrix[J]. Journal of Radars, 2016, 5(6): 701-710. doi: 10.12000/JR16138
    [14]Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. Journal of Radars, 2016, 5(6): 607-619. doi: 10.12000/JR16083
    [15]Yang Ruliang, Dai Bowei, Li Haiying. Polarization Hierarchy and System Operating Architecture for Polarimetric Synthetic Aperture Radar[J]. Journal of Radars, 2016, 5(2): 132-142. doi: 10.12000/JR16013
    [16]Wu Jiani, Chen Yongguang, Dai Dahai, Pang Bo, Wang Xuesong. Scattering Mechanism Identification Based on Polarimetric HRRP of Manmade Target[J]. Journal of Radars, 2016, 5(2): 174-181. doi: 10.12000/JR16026
    [17]Zhou Wei, Sun Yan-li, Xu Cheng-bin, Guan Jian. A Method for Discrimination of Ship Target and Azimuth Ambiguity in Multi-polarimetric SAR Imagery[J]. Journal of Radars, 2015, 4(1): 84-92. doi: 10.12000/JR14147
    [18]Xu Cheng-bin, Zhou Wei, Cong Yu, Guan Jian. Ship Analysis and Detection in High-resolution Pol-SAR Imagery Based on Peak Zone[J]. Journal of Radars, 2015, 4(3): 367-373. doi: 10.12000/JR14093
    [19]Yan Jian, Li Yang, Yin Qiang, Hong Wen. Freeman-Durden Decomposition with Oriented Dihedral Scattering[J]. Journal of Radars, 2014, 3(5): 574-582. doi: 10.3724/SP.J.1300.2014.14057
    [20]Wu Yi-rong. Concept on Multidimensional Space Joint-observation SAR[J]. Journal of Radars, 2013, 2(2): 135-142. doi: 10.3724/SP.J.1300.2013.13047
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100125150
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.8 %FULLTEXT: 32.8 %META: 47.4 %META: 47.4 %PDF: 19.8 %PDF: 19.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %其他: 0.9 %其他: 0.9 %China: 1.2 %China: 1.2 %San Mateo: 0.1 %San Mateo: 0.1 %上海: 4.8 %上海: 4.8 %东京: 0.4 %东京: 0.4 %东营: 0.1 %东营: 0.1 %临汾: 0.2 %临汾: 0.2 %临沂: 0.2 %临沂: 0.2 %京都: 0.1 %京都: 0.1 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.2 %佛山: 0.2 %保定: 0.1 %保定: 0.1 %信阳: 0.1 %信阳: 0.1 %兰州: 0.3 %兰州: 0.3 %内江: 0.2 %内江: 0.2 %加利福尼亚: 0.1 %加利福尼亚: 0.1 %包头: 0.8 %包头: 0.8 %北京: 12.2 %北京: 12.2 %十堰: 0.4 %十堰: 0.4 %南京: 3.3 %南京: 3.3 %南宁: 0.1 %南宁: 0.1 %南昌: 0.5 %南昌: 0.5 %南通: 0.1 %南通: 0.1 %台州: 0.3 %台州: 0.3 %合肥: 0.8 %合肥: 0.8 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.5 %哈尔滨: 0.5 %哥伦布: 0.1 %哥伦布: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.5 %天津: 0.5 %太原: 0.3 %太原: 0.3 %威海: 0.5 %威海: 0.5 %安康: 0.2 %安康: 0.2 %定西: 0.1 %定西: 0.1 %宣城: 0.3 %宣城: 0.3 %崇左: 0.1 %崇左: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.2 %常德: 0.2 %广元: 0.1 %广元: 0.1 %广州: 0.6 %广州: 0.6 %庆阳: 0.1 %庆阳: 0.1 %廊坊: 0.3 %廊坊: 0.3 %延安: 0.1 %延安: 0.1 %开封: 0.9 %开封: 0.9 %张家口: 3.3 %张家口: 3.3 %张家界: 0.1 %张家界: 0.1 %徐州: 0.2 %徐州: 0.2 %怀化: 0.1 %怀化: 0.1 %成都: 3.5 %成都: 3.5 %扬州: 0.6 %扬州: 0.6 %斯特灵: 0.1 %斯特灵: 0.1 %新乡: 0.1 %新乡: 0.1 %新德里: 0.2 %新德里: 0.2 %无锡: 0.4 %无锡: 0.4 %昆明: 1.7 %昆明: 1.7 %杭州: 1.5 %杭州: 1.5 %松原: 0.1 %松原: 0.1 %枣庄: 0.1 %枣庄: 0.1 %桂林: 0.6 %桂林: 0.6 %榆林: 0.3 %榆林: 0.3 %武汉: 0.9 %武汉: 0.9 %汉中: 0.1 %汉中: 0.1 %汕尾: 0.1 %汕尾: 0.1 %池州: 0.1 %池州: 0.1 %洛阳: 0.9 %洛阳: 0.9 %济南: 0.4 %济南: 0.4 %淮南: 0.2 %淮南: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.5 %温州: 0.5 %湖州: 0.4 %湖州: 0.4 %湘西: 0.1 %湘西: 0.1 %滨州: 0.2 %滨州: 0.2 %漯河: 2.5 %漯河: 2.5 %珠海: 0.3 %珠海: 0.3 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.2 %秦皇岛: 0.2 %纽约: 1.0 %纽约: 1.0 %绵阳: 0.2 %绵阳: 0.2 %芒廷维尤: 7.0 %芒廷维尤: 7.0 %芝加哥: 1.6 %芝加哥: 1.6 %苏州: 0.3 %苏州: 0.3 %荆门: 0.1 %荆门: 0.1 %葵涌: 0.1 %葵涌: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.2 %衡水: 0.2 %衡阳: 0.4 %衡阳: 0.4 %西宁: 6.1 %西宁: 6.1 %西安: 8.0 %西安: 8.0 %西雅图: 0.1 %西雅图: 0.1 %诺沃克: 8.4 %诺沃克: 8.4 %贵阳: 0.5 %贵阳: 0.5 %赤峰: 0.2 %赤峰: 0.2 %运城: 0.3 %运城: 0.3 %遵义: 0.1 %遵义: 0.1 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.7 %郑州: 0.7 %重庆: 0.3 %重庆: 0.3 %银川: 0.1 %银川: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 0.9 %长沙: 0.9 %长治: 0.1 %长治: 0.1 %防城港: 0.1 %防城港: 0.1 %陇南: 0.1 %陇南: 0.1 %香港: 0.2 %香港: 0.2 %黔东南: 0.1 %黔东南: 0.1 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他ChinaSan Mateo上海东京东营临汾临沂京都伦敦佛山保定信阳兰州内江加利福尼亚包头北京十堰南京南宁南昌南通台州合肥呼和浩特哈尔滨哥伦布嘉兴天津太原威海安康定西宣城崇左巴中常州常德广元广州庆阳廊坊延安开封张家口张家界徐州怀化成都扬州斯特灵新乡新德里无锡昆明杭州松原枣庄桂林榆林武汉汉中汕尾池州洛阳济南淮南深圳温州湖州湘西滨州漯河珠海石家庄秦皇岛纽约绵阳芒廷维尤芝加哥苏州荆门葵涌蚌埠衡水衡阳西宁西安西雅图诺沃克贵阳赤峰运城遵义邯郸郑州重庆银川长春长沙长治防城港陇南香港黔东南齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(518) PDF downloads(216) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint