Loading [MathJax]/jax/output/SVG/jax.js
Qian Lichang, Xu Jia, Hu Guoxu. Long-time Integration of a Multi-waveform for Weak Target Detection in Non-cooperative Passive Bistatic Radar[J]. Journal of Radars, 2017, 6(3): 259-266. doi: 10.12000/JR16137
Citation: WANG Wenqin and ZHANG Shunsheng. Recent advances in frequency diverse array radar techniques[J]. Journal of Radars, 2022, 11(5): 830–849. doi: 10.12000/JR22141

Recent Advances in Frequency Diverse Array Radar Techniques

DOI: 10.12000/JR22141
Funds:  The National Natural Science Foundation of China (62171092)
More Information
  • Corresponding author: WANG Wenqin, wqwang@uestc.edu.cn
  • Received Date: 2022-07-07
  • Rev Recd Date: 2022-10-11
  • Available Online: 2022-10-14
  • Publish Date: 2022-10-19
  • Due to the range dependence and time-varying array factor of Frequency Diverse Array (FDA) radar, it can overcome the miss of range variable in traditional phased-array factor and gain loss of Multiple-Input Multiple-Output (MIMO) radar array. In recent years, FDA radar techniques have attracted more and more attention of researches and institutions. Nevertheless, there are still many open problems to be solved in FDA radar system theory, signal processing and application implementation. In this overviewing paper, we introduced the FDA concepts, motivation and extending techniques. The latest research advances on FDA radars and their applications are comprehensively reviewed, and the typical application prospects of FDA in jamming radar and radar anti-jamming, ambiguous clutter suppression and blind velocity target detection together with localization deception are discussed. Finally, several key research problems that need to be solved in future work are pointed out.

     

  • 非合作无源双基地雷达(Non-cooperative Passive Bistatic Radar, NPBR)因具有造价低、抗截获、反隐身等诸多优势[16]而成为国内外研究热点。目前,NPBR研究的外辐射源信号主要包括通信电台信号、电视广播信号、手机信号以及雷达信号等。无论针对哪种外辐射源信号,在NPBR中,3大同步(包括空间同步、时间同步以及相位同步)问题始终是制约目标有效探测的关键问题。其中,空间同步是指接收和发射天线同时照射相同空域,空间同步关系到接收到的回波是否持续含有目标信息,即接收回波的有效性;时间同步是指接收天线必须准确获知发射天线发射波形时刻,时间同步关系到获取目标运动参数的准确性;相位同步是指发射和接收天线接收到的信号能够在长时间内严格相参,相位同步关系到目标相参积累性能,进而影响目标的探测性能。

    本文基于雷达外辐射源信号模型,重点讨论与时间同步及相位同步相关的几个问题,具体包括,发射波形参数估计、直达波到达时间估计以及基于波形参数估计的长时间相参积累等问题。其中,发射波形参数估计主要包括脉冲宽度、脉冲重复间隔、载频、带宽等脉间捷变的参数估计。基于估计的波形参数值,进一步给出了捷变波形的GRFT (Generalized Radon Fourier Transform)长时间相参积累弱目标探测算法,最后通过数值实验验证了本文算法的有效性。

    本文内容安排如下:第1节简单介绍了NPBR研究现状及存在的关键问题,明确了本文研究范畴;第2节建立了雷达外辐射源信号模型,给出了基于直达波的NPBR参数估计方法,并提出了一种鲁棒性高的脉冲提取方法;第3节给出了基于GRFT的捷变波形长时间积累算法;第4节利用实测数据对本文算法进行了验证;最后对本文内容进行了总结。

    图1给出了NPBR工作示意图。NPBR接收的信号主要包括两个部分:(1)直接接收到的辐射源旁瓣信号,称为直达波信号;(2)目标前向散射的回波信号。NPBR合理布设的情况下,直达波信号信噪比将远大于目标回波信噪比,十分有利于发射波形参数的估计。因此,本文将基于直达波信号对辐射源发射波形及波达时间等参数进行估计。

    图  1  NPBR示意图
    Figure  1.  Sketch map of NPBR

    设外辐射源发射如式(1)所示的LFM脉冲串信号,脉冲串信号脉冲重复间隔、脉宽、载频及带宽均为脉间捷变。

    s(τ,n)=Arect(τTp(n))exp{jπ(2fc(n)τ+γ(n)τ2)},  n=0,1,···,N1 (1)

    式中, τ为快时间,A为幅度,N为脉冲数, Tp(n)为脉冲宽度, fc(n)为载频, γ(n)=Bs(n)/Tp(n)为调频率, Bs(n)为信号带宽,n为脉冲序号。则直达波信号模型可写为:

    sr(τ,n)=A1rect(ττ0Tp(n))exp{j2πfc(n)τ0}exp{jπ[2fI(n)τ+γ(n)(ττ0)2]} (2)

    式中, τ0=2d0/c为直达波波达时间,d0为外辐射源与接收天线之间的距离, fI(n)=fc(n)fdown为中频频率, fdown为下变频参考频率。

    显然,式(2)中 τ0, Tp(n), γ(n)以及 fc(n)为待估计的未知参数。

    根据待估计参数,可将直达波参数估计过程分为如图2所示的两个部分:脉冲提取和脉冲参数估计。

    图  2  直达波参数估计流程图
    Figure  2.  Flow chart of parameter estimation of the direct waveform

    2.2.1 脉冲提取   脉冲提取通常分为3个步骤,包括时域直达波初提取、自适应带通滤波以及时域直达波脉冲精提取。直达波信号中,通常可能包含大量同频段电台、通信等干扰成分,因此原始直达波信号在时域进行脉冲提取误差较大,需要在初提取的基础上进行带通滤波。而由于直达波信号中心频率、带宽未知,因此无法直接设计带通滤波器。考虑到LFM信号频率响应近似为矩形,本文采用通过脉冲提取方法提取信号的频率响应,从而获得信号中心频率与带宽,进而设计带通滤波器滤除直达波干扰信号。因此,脉冲提取方法的性能决定了直达波脉冲提取的效果。

    脉冲串波形信息主要包含脉冲的上升沿、下降沿以及脉内调制信息。直达波脉冲提取可以等效于直达波脉冲的上升沿以及下降沿的提取。为此,本小节给出一种高鲁棒性的脉冲提取方法,该方法基本主要步骤包括:

    步骤1  自适应计算噪声阈值门限,对超过噪声阈值门限的信号样本索引号进行差分处理;

    步骤2  提取差分值大于最小脉冲间距的索引号作为预选上升沿;

    步骤3  将信号序列翻转,用相同的差分处理方法以及信号序列翻转前后的对应关系获得预选下降沿。上升沿与下降沿一一对应,组成预选脉冲;

    步骤4  从预选脉冲中剔除不符合预设脉冲条件的脉冲,将剩余脉冲作为最终提取结果。

    通常,噪声采样幅值无法连续超过噪声门限,因此无法形成与直达波脉冲宽度和脉冲重复间隔等特征相近的脉冲。本质上,该方法正是利用了噪声与直达波脉冲的这种特征区别,因此具有较好的鲁棒性。

    2.2.2 脉冲参数估计  图2中,脉冲参数估计部分包括以下几个步骤:调频率和中心频率的估计、直达波脉冲对齐、直达波波达时间及载频估计。

    在2.2.1小节脉冲提取的基础上,可以获得直达波信号的脉冲宽度及脉冲重复间隔。本小节针对提取的任意脉冲,给出脉内调制信息的提取方法。

    (a) 调频率和中心频率的估计

    每个提取的脉冲信号均为一个LFM信号,对于LFM信号的调频率及中心频率的估计方法较多。例如LvD[7,8], GRFT[911]等。考虑到GRFT参数估计的最优性[12,13],这里采用GRFT对LFM信号进行参数估计。设定中心频率范围为 ˜fk[fmin,fmax]及调频率范围为 ˜γl=[γmin,γmax],则中心频率及调频率估计值可由式(3)得到。式(3)中,LK分别为中心频率和调频率搜索点数, spulse(τ,n)为提取的第n个脉冲信号。

    [˜fI(n),˜γ(n)]  =argmax˜fk,˜γl{Ll=1Kk=1spulse(τ,n)  exp{jπ[2˜fkτ+˜γlτ2]}}  =argmax˜fk,˜γl{Ll=1Kk=1˜Aexp{jπ[2(fI(n)˜fk)τ  +(γ(n)˜γl)τ2]}} (3)

    式(3)中, ˜A为与 τ无关的复幅度。在实际中,由于提取脉冲的上升沿和下降沿可能存在较大误差,导致中心载频的估计值 ˜fI(n)与真实估计值存在一个不可忽略的偏差,记为 Δf(n),即 ˜fI(n)=fI(n) Δf(n)。中心频率偏差将在后续脉压中产生峰值位置的偏移。

    (b) 直达波脉冲对齐

    利用获取的脉冲宽度、中心频率以及调频率,可构建如式(4)所示的参考信号,并对式(2)所示的直达波脉冲信号进行脉冲压缩。脉压结果如式(5)所示。

    sref(τ,n)=rect(τ˜Tp(n))exp{jπ[2˜fI(n)τ+˜γ(n)τ2]} (4)
    sPC(τ,n)  =sr(τ,n)sref(τ,n)  =A1exp{j2πτ0fc(n)}  rect(uτ0Tp(n))rect(τu˜Tp(n))  exp{jπ[2fI(n)u+γ(n)(uτ0)2]}  exp{jπ[2˜fI(n)(τu)+˜γ(n)(τu)2]}du  rect(τ+Tp(n)/2τ0˜Tp(n))  exp{jπ[(τ+τ0)Δf(n)2τ0fc(n)]}  sinc{(ττ0+˜Tp(n))π˜γ(n)[ττ0+Δτ0(n)]} (5)

    式(5)中,

    Δτ0(n)=Δf(n)/˜γ(n) (6)

    显然,由于中心频率估计误差 Δf(n)的存在,脉压后,峰值位置存在一个与脉冲号相关偏移量 Δτ0(n),即不同脉冲的峰值位置处于不同距离单元。利用式(6)中不同脉冲峰值的位置偏移与频率估计误差之间的关系,可实现脉冲间相对频率估计误差的补偿,并实现脉冲对齐。记各脉冲与第1个脉冲的峰值偏差为:

    Δτr(n)=Δτ0(n)Δτ0(0) (7)

    由式(7),定义相对频率偏差为:

    Δfr(n)=Δτr(n)˜γ(n) (8)

    重新构建脉压匹配函数为:

    ˆsref(τ,n)=rect(τ˜Tp(n))exp{jπ{2[˜fI(n)Δfr(n)]τ+˜γ(n)τ2}} (9)

    则脉压结果更新为:

    sPC(τ,n)  =sr(τ,n)ˆsref(τ,n)  A0rect(τ+Tp(n)/2τ0˜Tp(n))  exp{jπ[(τ+τ0)Δf(0)2τ0fc(n)]}  sinc{(ττ0+˜Tp(n))π˜γ(n)[ττ0+Δτ0(0)]} (10)

    由式(10)可知,脉冲峰值位置均为:

    τ=τpeak=τ0Δτ0(0) (11)

    显然,与脉冲号无关,实现了脉冲对齐。

    (c) 直达波波达时间及载频估计

    由式(7)和式(8)可知

    Δfr(n)=(Δτ0(n)Δτ0(0))˜γ(n)=Δf(n)Δτ0(0)˜γ(n)=Δf(n)Δf(0)˜γ(n)/˜γ(0) (12)

    将式(12)代入式(10)中相位项,得到

    ˆϕ(n,τpeak)  =exp{jπ[(τpeak+τ0)Δf(0)2τ0fc(n)]}  =exp{jπ{(2τpeak+Δf(0)/˜γ(0))Δf(0)  2(τpeak+Δf(0)/˜γ(0))  [fdown+˜fI(n)Δfr(n)+Δf(0)˜γ(n)/˜γ(0)]}} (13)

    因此,利用式(14)可以得到第1个脉冲的中心频率误差的估计值。

    Δ˜f(0)=argmaxΔfkN1n=0sMF(τpeak,n)exp{jπ{(2τpeak+Δfk/˜γ(0))Δfk+2(τpeak+Δfk/˜γ(0))[fdown+˜fI(n)Δfr(n)+Δfk˜γ(n)/˜γ(0)]}} (14)

    式中,搜索频率 Δfk[Δfkmin,Δfkmax], ΔfkminΔfkmax为搜索最小值和最大值。

    进而得到直达波到达时间为:

    τ0=τpeak+Δτ0(0)=τpeak+Δ˜f(0)/˜γ(0) (15)

    中心频率估计值更新为:

    ˜fI(n)=˜fI(n)Δ˜f(n)=˜fI(n)(Δ˜f(0)/˜γ(0)+Δτr(n))˜γ(n) (16)

    进一步可以得到各脉冲的载频估计值为:

    ˜fc(n)=fdown+˜fI(n) (17)

    至此,外辐射源发射信号的脉冲重复频率、脉冲宽度、调频率、载频以及直达波达到时间均已获得,为脉间相参积累奠定基础。

    通过直达波的处理,可获得外辐射源信号的参数,并将获得的参数估计值代入式(4)可得到重构的脉压参考函数。利用该参考函数,对特定距离门内的回波进行脉压,得到脉压后距离-脉冲维结果。在此基础上,沿脉冲维进行捷变波形的长时间积累技术。目标回波时延为 τd(n)=2r(n)/c,式中,c为光速, r(n)为目标瞬时斜距,且

    r(n)=r0+v0nn=0Tr(n)+a02(nn=0Tr(n))2 (18)

    式中,r0为初始斜距,v0为径向速度,a0为径向加速度。

    结合式(1),目标回波可以写为:

    secho(τ,n)=A2rect(ττ0Tp(n))exp{j2πfc(n)τd(n)}exp{jπ[2fI(n)τ+γ(n)(ττd(n))2]} (19)

    式中,A2为回波幅度。

    ˜fI(n)替换式(4)所示参考函数的 ˜fI(n),利用更新后的参考函数对式(19)进行脉压,得到

    sPC_echo(τ,n)  =secho(τ,n)sref(τ,n)  A2rect(ττd(n)2˜Tp(n))exp{j2πτd(n)fc(n)}  sinc{π(˜Tp(n)|ττd(n)|)˜γ(n)(ττd(n))} (20)

    基于式(20),可得到运动参数空间中,相参积累的结果为:

    G(i,j,k)=N1n=0sPC_echo(τ(ri,vj,ak;n),n)exp{j2πτ(ri,vj,ak;n)˜fc(n)} (21)

    式中,ri, vj, ak分别为搜索的距离、速度和加速度值,且

    τ(ri,vj,ak;n) =2c[ri+vinn=0Tr(n)+ai2(nn=0Tr(n))2] (22)

    式(21)实际上为文献[912]中GRFT的一种特殊形式。值得注意的是,式(20)中的脉压输出波形在脉冲间可以是捷变的,因此,其盲速旁瓣[10]等积累性能与非捷变信号GRFT结果将会有较大区别,篇幅原因,本文不进行讨论。

    τ(ri,vj,ak;n)=τd(n)时,式(18)得到峰值:

    G(i,j,k)max=A2N (23)

    即实现了积累增益随脉冲数增加而线性增加的相参积累结果。将式(21)中得到的积累幅值与恒虚警(Constant False Alarm Rate, CFAR)门限进行比较,即可得到最终检测结果。

    对于功率为 σ2的高斯白噪声背景,N个脉冲相参积累后的噪声输出功率为 Nσ2[9],因此,相参积累的输出信噪比为 NA22/σ2,即为积累前信噪比的N倍。另外,本文方法对输入信噪比的要求与积累脉冲数及检测门限相关。在检测门限一定的条件下,目标回波信噪比越小,所需的积累脉冲数越多,进而所需的波束驻留时间也越长。

    本文总体算法处理流程如图3所示。

    图  3  算法流程
    Figure  3.  Flowchart of the algorithm

    本小节将利用仿真和实测数据实验对所提方法进行验证。

    仿真实验中,外辐射源雷达工作在P波段,发射波形脉宽、时宽及带宽脉间捷变,场景中存在一个微弱目标,脉压后信噪比为0,运动参数为(120 km, 350 m/s, 20 m/s2),积累脉冲数为100。部分原始回波实部信号和模值如图4所示。图5为直达波提取结果,该结果验证了本文脉冲提取方法的有效性。图6为目标回波脉压结果。显然,脉压结果中,目标淹没在噪声中。利用动目标检测(Moving Target Detection, MTD)方法,得到结果如图7所示,利用本文长时间积累方法,得到结果如图8所示。显然,通过时间和相位同步,利用本文的波形捷变GRFT方法能够将目标能量有效积累,进而验证了本文算法的有效性。

    图  4  原始直达波信号
    Figure  4.  Original signal of the direct waveform
    图  5  脉冲提取结果
    Figure  5.  Pulse extraction result
    图  6  目标回波脉冲压缩结果
    Figure  6.  Echo pulse compression result
    图  7  MTD结果
    Figure  7.  MTD result
    图  8  时间相位同步后相参积累结果
    Figure  8.  Coherent integration result after time and phase synchronization

    实测数据实验中,外辐射源雷达工作在P波段,发射波形脉宽、时宽及带宽脉间捷变。图9为回波脉压结果,从脉压结果可以看出,场景中存在多个微弱目标,而且在观测时间内,目标存在明显跨距离单元现象。针对图9中弱目标1进行捷变波形GRFT长时间积累,得到目标检测及跟踪结果如图10所示。处理中,每一帧的积累脉冲数为20,平均积累时间约为0.42 s,帧间滑动步长为10个脉冲。图11给出了基于本文算法的相参积累与常规MTD、单脉冲处理的信噪比结果对比。由于目标存在跨距离单元现象,在相同积累脉冲数情况下,本文相参积累性能显著高于常规MTD。

    图  9  目标回波脉冲压缩
    Figure  9.  Echo pulse compression result
    图  10  弱目标轨迹探测结果
    Figure  10.  Weak target trace detection result
    图  11  积累SNR比较
    Figure  11.  SNR comparisons

    实验结果表明,利用本文的基于直达波的外辐射源波形估计方法以及捷变波形GRFT相参积累方法,能够将长时间观测的目标回波能量有效积累。

    本文针对非合作外辐射源双基地雷达中时间和相位同步问题以及捷变波形的长时间相参积累问题进行了研究。给出了一种直达波脉冲提取方法,并利用直达波参数估计实现了时间和相位同步,在此基础上,进一步给出了波形捷变GRFT长时间相参积累方法,通过仿真和实测数据实验,验证了该方法对微弱目标探测的有效性。

    直达波信噪比大小会影响波形参数估计误差,该信噪比越小,波形参数估计误差越大,进而长时间积累性能也越差。估计误差对目标参数测量及相参积累性能的分析将在后续工作中进行定量分析。另外,后续将对双基地目标运动参数的解算、捷变波形GRFT的相参积累性能及其盲速旁瓣特性等方面内容开展研究。

  • [1]
    ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Frequency diverse array radars[C]. 2006 IEEE Radar Conference, Verona, USA, 2006: 215–217.
    [2]
    ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Multi-mission multi-mode waveform diversity[C]. 2006 IEEE Radar Conference, Verona, USA, 2006: 580–582.
    [3]
    ANTONIK P, WICKS M C, GRIFFITHS H D, et al. Range dependent beamforming using element level waveform diversity[C]. 2006 International Waveform Diversity Design Conference, Las Vegas, USA, 2006: 1–4.
    [4]
    SECMEN M, DEMIR S, HIZAL A, et al. Frequency diverse array antenna with periodic time modulated pattern in range and angle[C]. 2007 IEEE Radar Conference, Waltham, USA, 2007: 427–430.
    [5]
    HUANG Jingjing, TONG K F, and BAKER C J. Frequency diverse array with beam scanning feature[C]. 2008 IEEE Antennas and Propagation Society International Symposium, San Diego, USA, 2008: 1–4.
    [6]
    SAMMARTINO P F, BAKER C J, and GRIFFITHS H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. doi: 10.1109/TAES.2013.6404099
    [7]
    SHIN J, CHOI J H, KIM J, et al. Full-wave simulation of frequency diverse array antenna using the FDTD method[C]. 2013 Asia-Pacific Microwave Conference, Seoul, Korea (South), 2013: 1070–1072.
    [8]
    WICKS M C and ANTONIK P. Frequency diverse array with independent modulation of frequency, amplitude, and phase[P]. US, 7319427, 2008.
    [9]
    WICKS M C and ANTONIK P. Method and apparatus for a frequency diverse array[P]. US, 20090015474, 2009.
    [10]
    ANTONIK P and WICKS M C. Method and apparatus for simultaneous synthetic aperture radar and moving target indication[P]. US, 20080129584, 2008.
    [11]
    ANTONIK P. An investigation of a frequency diverse array[D]. [Ph. D. dissertation], University College London, 2009.
    [12]
    AYTUN A. Frequency diverse array radar[D]. [Master dissertation], Naval Postgraduate School, 2010.
    [13]
    BRADY S H. Frequency diverse array radar: Signal characterization and measurement accuracy[D]. [Master dissertation], Air Force Institute of Technology, 2010.
    [14]
    王哲. 频控阵波束的距离角度依赖特性研究[D]. [博士论文], 电子科技大学, 2018.

    WANG Zhe. Research on range-angle-dependent characteristics of frequency diverse array beampattern[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2018.
    [15]
    BAIZERT P. Forward-looking radar clutter suppression using frequency diverse arrays[D]. [Master dissertation], Air Force Institute of Technology, 2006.
    [16]
    JONES A M. Frequency diverse array receiver architectures[D]. [Master dissertation], Wright State University, 2007.
    [17]
    HUANG J J. Frequency diversity array: Theory and design[D]. [Ph. D. dissertation], University College London, 2010.
    [18]
    FAROOQ J L. Frequency diversity for improving synthetic aperture radar imaging[D]. [Ph. D. dissertation], Air Force Institute of Technology, 2009.
    [19]
    WANG Wenqin. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8): 4073–4081. doi: 10.1109/TAP.2013.2260515
    [20]
    WANG Wenqin and SHAO Huaizong. Range-angle localization of targets by a double-pulse frequency diverse array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(1): 106–114. doi: 10.1109/JSTSP.2013.2285528
    [21]
    WANG Wenqin and SO H C. Transmit subaperturing for range and angle estimation in frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2014, 62(8): 2000–2011. doi: 10.1109/TSP.2014.2305638
    [22]
    WANG Wenqin. Moving-target tracking by cognitive RF stealth radar using frequency diverse array antenna[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 3764–3773. doi: 10.1109/TGRS.2016.2527057
    [23]
    WANG Wenqin. Cognitive frequency diverse array radar with situational awareness[J]. IET Radar, Sonar & Navigation, 2016, 10(2): 359–369. doi: 10.1049/iet-rsn.2015.0211
    [24]
    王文钦, 邵怀宗, 陈慧. 频控阵雷达: 概念、原理与应用[J]. 电子与信息学报, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235

    WANG Wenqin, SHAO Huaizong, and CHEN Hui. Frequency diverse array radar: Concept, principle and application[J]. Journal of Electronics &Information Technology, 2016, 38(4): 1000–1011. doi: 10.11999/JEIT151235
    [25]
    王文钦, 陈慧, 郑植, 等. 频控阵雷达技术及其应用研究进展[J]. 雷达学报, 2018, 7(2): 153–166. doi: 10.12000/JR18029

    WANG Wenqin, CHEN Hui, ZHENG Zhi, et al. Advances on frequency diverse array radar and its applications[J]. Journal of Radars, 2018, 7(2): 153–166. doi: 10.12000/JR18029
    [26]
    WANG Wenqin, SO H C, and FARINA A. An overview on time/frequency modulated array processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 228–246. doi: 10.1109/JSTSP.2016.2627182
    [27]
    WANG Wenqin. Frequency diverse array antenna: New opportunities[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 145–152. doi: 10.1109/MAP.2015.2414692
    [28]
    许京伟, 朱圣棋, 廖桂生, 等. 频率分集阵雷达技术探讨[J]. 雷达学报, 2018, 7(2): 167–182. doi: 10.12000/JR18023

    XU Jingwei, ZHU Shengqi, LIAO Guisheng, et al. An overview of frequency diverse array radar technology[J]. Journal of Radars, 2018, 7(2): 167–182. doi: 10.12000/JR18023
    [29]
    兰岚, 许京伟, 朱圣棋, 等. 波形分集阵列雷达抗干扰进展[J]. 系统工程与电子技术, 2021, 43(6): 1437–1451. doi: 10.12305/j.issn.1001-506X.2021.06.01

    LAN Lan, XU Jingwei, ZHU Shengqi, et al. Advances in anti-jamming using waveform diverse array radar[J]. Systems Engineering and Electronics, 2021, 43(6): 1437–1451. doi: 10.12305/j.issn.1001-506X.2021.06.01
    [30]
    朱圣棋, 余昆, 许京伟, 等. 波形分集阵列新体制雷达研究进展与展望[J]. 雷达学报, 2021, 10(6): 795–810. doi: 10.12000/JR21188

    ZHU Shengqi, YU Kun, XU Jingwei, et al. Research progress and prospect for the noval waveform diverse array radar[J]. Journal of Radars, 2021, 10(6): 795–810. doi: 10.12000/JR21188
    [31]
    YAO Amin, WU Wen, FANG Dagang, et al. Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4434–4446. doi: 10.1109/TAP.2016.2594075
    [32]
    YAO Amin, ROCCA P, WU Wen, et al. Synthesis of time-modulated frequency diverse arrays for short-range multi-focusing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 282–294. doi: 10.1109/JSTSP.2016.2615267
    [33]
    YAO Amin, WU Wen, FANG Dagang, et al. Solutions of time-invariant spatial focusing for multi-targets using time modulated frequency diverse antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 552–566. doi: 10.1109/TAP.2016.2633902
    [34]
    RANISZEWSKI A. Radiation pattern synthesis for RADAR application using Genetic Algorithm[C]. 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON), Krakow, Poland, 2016: 1–4. doi: 10.1109/MIKON.2016.7492086.
    [35]
    WANG Yuxi, LI Wei, HUANG Guoce, et al. Time-invariant range-angle-dependent beampattern synthesis for FDA radar targets tracking[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2375–2379. doi: 10.1109/LAWP.2017.2718580
    [36]
    CHEN Baoxin, CHEN Xiaolong, HUANG Yong, et al. Transmit beampattern synthesis for the FDA radar[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 98–101. doi: 10.1109/LAWP.2017.2776957
    [37]
    XU Wei, ZHANG Lihua, BI Hui, et al. FDA beampattern synthesis with both nonuniform frequency offset and array spacing[J]. IEEE Antennas and Wireless Propagation Letters, 2021, 20(12): 2354–2358. doi: 10.1109/LAWP.2021.3110847
    [38]
    XU Yanhong, SHI Xiaowei, LI Wentao, et al. Flat-top beampattern synthesis in range and angle domains for frequency diverse array via second-order cone programming[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1479–1482. doi: 10.1109/LAWP.2015.2513758
    [39]
    XIONG Jie, WANG Wenqin, SHAO Huaizong, et al. Frequency diverse array transmit beampattern optimization with genetic algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 469–472. doi: 10.1109/LAWP.2016.2584078
    [40]
    WANG Yuxi, HUANG Guoce, and LI Wei. Transmit beampattern design in range and angle domains for MIMO frequency diverse array radar[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1003–1006. doi: 10.1109/LAWP.2016.2616193
    [41]
    LI Qiang, HUANG Lei, SO H C, et al. Beampattern synthesis for frequency diverse array via reweighted L1 iterative phase compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 467–475. doi: 10.1109/TAES.2017.2735638
    [42]
    YANG Yuqian, WANG Hao, WANG Haiqing, et al. Optimization of sparse frequency diverse array with time-invariant spatial-focusing beampattern[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(2): 351–354. doi: 10.1109/LAWP.2018.2789979
    [43]
    WANG Wenqin. Ultrawideband frequency-diverse array antennas: Range-dependent and autoscanning beampattern applications[J]. IEEE Antennas and Propagation Magazine, 2018, 60(3): 48–56. doi: 10.1109/MAP.2018.2818023
    [44]
    GONG Shiqi, WANG Shuai, CHEN Sheng, et al. Time-invariant joint transmit and receive beampattern optimization for polarization-subarray based frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2018, 66(20): 5364–5379. doi: 10.1109/TSP.2018.2868041
    [45]
    CHENG Qian, ZHU Jiang, XIE Tao, et al. Time-invariant angle-range dependent directional modulation based on time-modulated frequency diverse arrays[J]. IEEE Access, 2017, 5: 26279–26290. doi: 10.1109/ACCESS.2017.2772246
    [46]
    LIAO YI, WANG Wenqin, and ZHENG Zhi. Frequency diverse array beampattern synthesis using symmetrical logarithmic frequency offsets for target indication[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3505–3509. doi: 10.1109/TAP.2019.2900353
    [47]
    LI Wentao, CUI Can, YE Xiutiao, et al. Quasi-time-invariant 3-D focusing beampattern synthesis for conformal frequency diverse array[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(4): 2684–2697. doi: 10.1109/TAP.2019.2955199
    [48]
    ZUBAIR M, AHMED S, and ALOUINI M S. Frequency diverse array radar: New results and discrete Fourier transform based beampattern[J]. IEEE Transactions on Signal Processing, 2020, 68: 2670–2681. doi: 10.1109/TSP.2020.2985587
    [49]
    LIAO Yi, WANG Jian, and LIU Qinghuo. Transmit beampattern synthesis for frequency diverse array with particle swarm frequency offset optimization[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 892–901. doi: 10.1109/TAP.2020.3027576
    [50]
    WU Xuehan, SHAO Huaizong, LIN Jingran, et al. High-speed user-centric beampattern synthesis via frequency diverse array[J]. IEEE Transactions on Signal Processing, 2021, 69: 1226–1241. doi: 10.1109/TSP.2021.3054988
    [51]
    WANG Wenqin. Subarray-based frequency diverse array radar for target range-angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3057–3067. doi: 10.1109/TAES.2014.120804
    [52]
    XU Jingwei, LIAO Guisheng, ZHU Shengqi, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. doi: 10.1109/TSP.2015.2422680
    [53]
    WANG Chuanzhi and ZHU Xiaohua. Three-dimensional parameter estimation of uniform circular frequency diverse array radar with two-stage estimator[J]. IEEE Sensors Journal, 2021, 21(16): 17775–17784. doi: 10.1109/JSEN.2021.3083709
    [54]
    XIONG Jie, WANG Wenqin, and GAO Kuandong. FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 284–294. doi: 10.1109/TAES.2017.2756498
    [55]
    ZHENG Guimei and SONG Yuwei. Signal model and method for joint angle and range estimation of low-elevation target in meter-wave FDA-MIMO radar[J]. IEEE Communications Letters, 2022, 26(2): 449–453. doi: 10.1109/LCOMM.2021.3126935
    [56]
    GUI Ronghua, WANG Wenqin, PAN Ye, et al. Cognitive target tracking via angle-range-Doppler estimation with transmit subaperturing FDA radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 76–89. doi: 10.1109/JSTSP.2018.2793761
    [57]
    LAN Lan, ROSAMILIA M, AUBRY A, et al. Single-snapshot angle and incremental range estimation for FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3705–3718. doi: 10.1109/TAES.2021.3083591
    [58]
    陈慧, 田湘, 李子豪, 等. 共形FDA-MIMO雷达降维目标参数估计研究(英文)[J]. 雷达学报, 2021, 10(6): 811–821. doi: 10.12000/JR21197

    CHEN Hui, TIAN Xiang, LI Zihao, et al. Reduced-dimension target parameter estimation for conformal FDA-MIMO radar[J]. Journal of Radars, 2021, 10(6): 811–821. doi: 10.12000/JR21197
    [59]
    ZHAO Zhihao, WANG Zhimin, and SUN Yang. Joint angle, range and velocity estimation for bi-static FDA-MIMO radar[C]. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China, 2017: 818–824. doi: 10.1109/IAEAC.2017.8054129.
    [60]
    GUI Ronghua and WANG Wenqin. Adaptive transmit power allocation for FDA radar with spectral interference avoidance[C]. IEEE Radar Conference, Florence, Italy, 2020: 1–6.
    [61]
    CHENG Jie, HUANG Bang, TANG Wanru, et al. A deceptive jamming against spaceborne SAR based on Doppler-shift convolutional using FDA[C]. 2019 6th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Xiamen, China, 2019: 1–5. doi: 10.1109/APSAR46974.2019.9048528.
    [62]
    YU Jianfei, NIE Wei, ZHOU Mu, et al. Scattered wave deception jamming against squint SAR using frequency diverse array[C]. 2020 IEEE Asia-Pacific Microwave Conference (APMC), Hong Kong, China, 2020: 979–981. doi: 10.1109/APMC47863.2020.9331697.
    [63]
    TAN Ming, WANG Chunyang, XUE Bin, et al. A novel deceptive jamming approach against frequency diverse array radar[J]. IEEE Sensors Journal, 2021, 21(6): 8323–8332. doi: 10.1109/JSEN.2020.3045757
    [64]
    LIAO Yi, TANG Hu, WANG Wenqin, et al. A low sidelobe deceptive jamming suppression beamforming method with a frequency diverse array[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4884–4889. doi: 10.1109/TAP.2021.3138529
    [65]
    XU Jingwei, LIAO Guisheng, HUANG Lei, et al. Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar[J]. IEEE Transactions on Signal Processing, 2017, 65(4): 973–984. doi: 10.1109/TSP.2016.2628340
    [66]
    LAN Lan, MARINO A, AUBRY A, et al. GLRT-based adaptive target detection in FDA-MIMO radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(1): 597–613. doi: 10.1109/TAES.2020.3028485
    [67]
    HUANG Bang, BASIT A, GUI Ronghua, et al. Adaptive moving target detection without training data for FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2022, 71(1): 220–232. doi: 10.1109/TVT.2021.3126781
    [68]
    HUANG Bang, WANG Wenqin, BASIT A, et al. Bayesian detection in Gaussian clutter for FDA-MIMO radar[J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 2655–2667. doi: 10.1109/TVT.2021.3139894
    [69]
    HUANG Bang, BASIT A, WANG Wenqin, et al. Adaptive detection with Bayesian framework for FDA-MIMO radar[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 3509505. doi: 10.1109/LGRS.2021.3123654
    [70]
    XU Jingwei, LIAO Guisheng, ZHANG Yuhong, et al. An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 309–320. doi: 10.1109/JSTSP.2016.2615269
    [71]
    WANG Wenqin. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar, Sonar & Navigation, 2016, 10(6): 1001–1012. doi: 10.1049/iet-rsn.2015.0464
    [72]
    GUI Ronghua, WANG Wenqin, CUI Can, et al. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis[J]. IEEE Transactions on Signal Processing, 2018, 66(1): 200–214. doi: 10.1109/TSP.2017.2764860
    [73]
    许京伟, 兰岚, 朱圣棋, 等. 相干频率分集阵雷达匹配滤波器设计[J]. 系统工程与电子技术, 2018, 40(8): 1720–1728. doi: 10.3969/j.issn.1001-506X.2018.08.08

    XU Jingwei, LAN Lan, ZHU Shengqi, et al. Design of matched filter for coherent FDA radar[J]. Systems Engineering and Electronics, 2018, 40(8): 1720–1728. doi: 10.3969/j.issn.1001-506X.2018.08.08
    [74]
    XU Yanhong, WANG Anyi, and XU Jingwei. Range-angle transceiver beamforming based on semicircular-FDA scheme[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 834–843. doi: 10.1109/TAES.2021.3111792
    [75]
    CHEN Kejin, YANG Shiwen, CHEN Yikai, et al. Accurate models of time-invariant beampatterns for frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3022–3029. doi: 10.1109/TAP.2019.2896712
    [76]
    FARTOOKZADEH M. Comments on “Optimization of sparse frequency diverse array with time-invariant spatial-focusing beampattern”[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2521. doi: 10.1109/LAWP.2018.2870602
    [77]
    YANG Yuqian, WANG Hao, WANG Haiqing, et al. Reply to “Comments on ‘Optimization of sparse frequency diverse array with time-invariant spatial-focusing beampattern’”[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(12): 2522. doi: 10.1109/LAWP.2018.2870513
    [78]
    FARTOOKZADEH M. Comments on “Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern”[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1211–1212. doi: 10.1109/TAP.2019.2955155
    [79]
    WU Wen and FANG Dagang. Reply to comments on “Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern”[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(2): 1213. doi: 10.1109/TAP.2019.2955162
    [80]
    SHI Jiantao, SUN Jun, YANG Yuhao, et al. Comments on “frequency diverse array beam-pattern synthesis using symmetrical logarithmic frequency offsets for target indication”[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(12): 8270–8271. doi: 10.1109/TAP.2020.3028547
    [81]
    LIU Gang, HUANG He, and WANG Wenqin. Frequency diverse array radar in counteracting mainlobe jamming signals[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1228–1232.
    [82]
    SHI Jiantao, SUN Jun, YANG Yuhao, et al. Mainlobe jamming suppression with frequency diverse array radar[C]. 2019 IEEE International Conference on Signal, Information and Data Processing, Chongqing, China, 2019: 1–4.
    [83]
    SUN Wenhao, LAN Lan, LIAO Guisheng, et al. Compound interference suppression for bistatic FDA-MIMO radar based on joint two-stage processing[C]. 2022 IEEE 12th Sensor Array and Multichannel Signal Processing Workshop (SAM), Trondheim, Norway, 2022: 375–379. doi: 10.1109/SAM53842.2022.9827793.
    [84]
    XU Jingwei, KANG Jialin, LIAO Guisheng, et al. Mainlobe deceptive jammer suppression with FDA-MIMO radar[C]. 2018 IEEE 10th Sensor Array and Multichannel Signal Processing Workshop, Sheffield, UK, 2018: 1–5.
    [85]
    WANG Wenqin, SO H C, and FARINA A. FDA-MIMO signal processing for mainlobe jammer suppression[C]. The 27th European Signal Processing Conference, A Coruna, Spain, 2019: 1–4.
    [86]
    LIU Yibin, WANG Chunyang, GONG Jian, et al. Discrimination of mainlobe deceptive target with meter-wave FDA-MIMO radar[J]. IEEE Communications Letters, 2022, 26(5): 1131–1135. doi: 10.1109/LCOMM.2022.3155371
    [87]
    GUI Ronghua, WANG Wenqin, FARINA A, et al. FDA radar with Doppler-spreading consideration: Mainlobe clutter suppression for blind-Doppler target detection[J]. Signal Processing, 2021, 179(9): 107773. doi: 10.1016/j.sigpro.2020.107773
    [88]
    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Suppression approach to main-beam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection[J]. IEEE Access, 2018, 6: 34582–34597. doi: 10.1109/ACCESS.2018.2850816
    [89]
    CAI Wen, PENG Jinye, ZHOU Yan, et al. Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 18(10): 4154–4166. doi: 10.1109/JSEN.2018.2820905
    [90]
    WANG Yuzhuo and ZHU Shengqi. Main-beam range deceptive jamming suppression with simulated annealing FDA-MIMO radar[J]. IEEE Sensors Journal, 2020, 20(16): 9056–9070. doi: 10.1109/JSEN.2020.2982194
    [91]
    CHENG Jie, WANG Wenqin, and ZHANG Shunsheng. Joint MIMO and frequency diverse array for suppressing mainlobe interferences[C]. 2020 International Symposium on Antennas and Propagation, Osaka, Japan, 2021: 1–4.
    [92]
    ZHU Yu, WANG Hui, ZHANG Shunsheng, et al. Deceptive jamming on space-borne SAR using frequency diverse array[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 1–4.
    [93]
    WANG Hui, ZHANG Shunsheng, and WANG Wenqin. Homogeneously distributed multiple false targets jamming using frequency diverse array[C]. 2018 International Radar Conference, Brisbane, Australia, 2018: 1–6.
    [94]
    HUANG Libing, ZONG Zhulin, WANG Hui, et al. Multi-targets deception jamming for ISAR with frequency diverse array[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1–4.
    [95]
    ZONG Zhulin, HUANG Libing, WANG Hui, et al. Micro-motion deception jamming on SAR using frequency diverse array[C]. 2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019: 1–4.
    [96]
    HUANG Bang, WANG Wenqin, ZHANG Shunsheng, et al. A novel approach for spaceborne SAR scattered-wave deception jamming using frequency diverse array[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(9): 1568–1572. doi: 10.1109/LGRS.2019.2950454
    [97]
    HUANG Bang, WANG Wenqin, ZHANG Shunsheng, et al. FDA-based space-time-frequency deceptive jamming against SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(3): 2127–2140. doi: 10.1109/TAES.2021.3130212
    [98]
    CERUTTI-MAORI D and SIKANETA I. A generalization of DPCA processing for multichannel SAR/GMTI radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1): 560–572. doi: 10.1109/TGRS.2012.2201260
    [99]
    KREYENKAMP O and KLEMM R. Doppler compensation in forward-looking STAP radar[J]. IEE Proceedings - Radar, Sonar and Navigation, 2001, 148(5): 253–258. doi: 10.1049/ip-rsn:20010557
    [100]
    XU Jingwei, ZHU Shengqi, and LIAO Guisheng. Range ambiguous clutter suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1620–1631. doi: 10.1109/JSTSP.2015.2465353
    [101]
    WANG Kayi, LIAO Guisheng, XU Jingwei, et al. Clutter rank analysis in airborne FDA-MIMO radar with range ambiguity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 1416–1430. doi: 10.1109/TAES.2021.3122822
    [102]
    王娈婧, 张顺生, 王文钦. 机载前视FDA-MIMO雷达距离模糊杂波抑制[J]. 信号处理, 2022, 38(4): 854–862. doi: 10.16798/j.issn.1003-0530.2022.04.020

    WANG Luanjing, ZHANG Shunsheng, and WANG Wenqin. Range-ambiguous clutter suppression for forward-looking FDA-MIMO radar[J]. Journal of Signal Processing, 2022, 38(4): 854–862. doi: 10.16798/j.issn.1003-0530.2022.04.020
    [103]
    LYNCH D JR. Introduction to RF Stealth[M]. Raleigh: SciTech Publishing Inc. , 2004.
    [104]
    樊依晨. 机载战场侦察雷达射频隐身波形设计[D]. [硕士论文], 中国电子科技集团公司电子科学研究院, 2021.

    FAN Yichen. Research on RF stealth waveform design of airborne battlefield surveillance radar[D]. [Master dissertation], China Academic of Electronics and Information Technology, 2021.
    [105]
    梁海珊. 下一代战斗机雷达隐身技术[J]. 现代雷达, 2018, 40(3): 11–14. doi: 10.16592/j.cnki.1004-7859.2018.03.003

    LIANG Haishan. Stealth technology for radar onboard next generation fighter[J]. Modern Radar, 2018, 40(3): 11–14. doi: 10.16592/j.cnki.1004-7859.2018.03.003
    [106]
    时晨光. 机载雷达组网射频隐身技术研究[D]. [博士论文], 南京航空航天大学, 2017.

    SHI Chenguang. Research on radio frequency stealth technology in airborne radar networks[D]. [Ph. D. dissertation], Nanjing University of Aeronautics and Astronautics, 2017.
    [107]
    张杰, 江涛, 张怀根, 等. 雷达射频隐身技术研究与发展[J]. 现代雷达, 2019, 41(6): 13–19, 36. doi: 10.16592/j.cnki.1004-7859.2019.06.003

    ZHANG Jie, JIANG Tao, ZHANG Huaigen, et al. Radar RF stealth technology research and development[J]. Modern Radar, 2019, 41(6): 13–19, 36. doi: 10.16592/j.cnki.1004-7859.2019.06.003
    [108]
    肖永生. 射频隐身雷达信号设计与目标识别研究[D]. [博士论文], 南京航空航天大学, 2014.

    XIAO Yongsheng. Study on radio stealth radar signal design and recognition method[D]. [Ph. D. dissertation], Nanjing University of Aeronautics and Astronautics, 2014.
    [109]
    杨少委. 正交波形MIMO雷达射频隐身技术研究[D]. [博士论文], 电子科技大学, 2015.

    YANG Shaowei. Research on radio frequency stealth technology for orthogonal waveform MIMO radar[D]. [Ph. D. dissertation], University of Electronic Science and Technology of China, 2015.
    [110]
    WANG Wenqin. Adaptive RF stealth beamforming for frequency diverse array radar[C]. The 23rd European Signal Processing Conference, Nice, France, 2015: 1–4.
    [111]
    WANG Liu, PAN Ye, WANG Wenqin, et al. On FDA RF localization deception under sum difference beam reconnaissance[C]. 2018 IEEE Radar Conference, Oklahoma City, USA, 2018: 1–5.
    [112]
    GUAN Haoliang, ZHANG Shunsheng, WANG Wenqin, et al. Localization deception approach using frequency diverse array against bi-satellite positioning reconnaissance[C]. 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018: 1–4.
    [113]
    WANG Liu, WANG Wenqin, GUAN Haoliang, et al. LPI property of FDA transmitted signal[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 3905–3915. doi: 10.1109/TAES.2021.3083402
    [114]
    关浩亮, 张顺生, 王文钦. 基于频控阵的无源定位对抗技术[J]. 雷达学报, 2021, 10(6): 833–841. doi: 10.12000/JR21091

    GUAN Haoliang, ZHANG Shunsheng, and WANG Wenqin. Passive localization countermeasure based on frequency diverse array[J]. Journal of Radars, 2021, 10(6): 833–841. doi: 10.12000/JR21091
    [115]
    CUI Can, XIONG Jie, WANG Wenqin, et al. Localization performance analysis of FDA radar receiver with two-stage estimator[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2873–2887. doi: 10.1109/TAES.2018.2831818
    [116]
    XU Jingwei, LAN Lan, LIAO Guisheng, et al. Range-angle matched receiver for coherent FDA radars[C]. 2017 IEEE Radar Conference, Seattle, USA, 2017: 1–5.
    [117]
    WANG Chuanzhi and ZHU Xiaohua. A novel receiver design based on FrFT for frequency diversity array radar[C]. 2021 IEEE 6th International Conference on Signal and Image Processing, Nanjing, China, 2021: 1–4.
    [118]
    ZHU Jingjing, ZHU Shengqi, XU Jingwei, et al. Cooperative range and angle estimation with PA and FDA radars[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(2): 907–921. doi: 10.1109/TAES.2021.3117050
    [119]
    GONG Pengcheng, ZHANG Zhuoyu, WU Yuntao, et al. Joint design of transmit waveform and receive beamforming for LPI FDA-MIMO radar[J]. IEEE Signal Processing Letters, 2022, 29: 1938–1942. doi: 10.1109/LSP.2022.3205206
    [120]
    WANG Liu, WANG Wenqin, and SO H C. Covariance matrix estimation for FDA-MIMO adaptive transmit power allocation[J]. IEEE Transactions on Signal Processing, 2022, 70(1): 3386–3399. doi: 10.1109/TSP.2022.3184780
    [121]
    BADEAU R, DAVID B, and RICHARD G. Fast approximated power iteration subspace tracking[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 2931–2941. doi: 10.1109/TSP.2005.850378
    [122]
    HIGGINS T. Waveform diversity and range-coupled adaptive radar signal processing[D]. [Ph. D. dissertation], University of Kansas, 2011.
    [123]
    WEN Cai, HUANG Yan, PANG Jinye, et al. Slow-time FDA-MIMO technique with application to STAP radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 74–95. doi: 10.1109/TAES.2021.3098100
    [124]
    WEN Chao, XIE Yu, QIAO Zhiwei, et al. A tensor generalized weighted linear predictor for FDA-MIMO radar parameter estimation[J]. IEEE Transactions on Vehicular Technology, 2022, 71(6): 6059–6072. doi: 10.1109/TVT.2022.3157938
    [125]
    JANG S, IM C, LEE H, et al. A single-snapshot localization for monostatic FDA-MIMO radar[J]. IEEE Communications Letters, 2022.
    [126]
    于雷, 何峰, 董臻, 等. 一种基于非线性调频信号和空域编码的FDA雷达波形设计方法[J]. 雷达学报, 2021, 10(6): 822–832. doi: 10.12000/JR21008

    YU Lei, HE Feng, DONG Zhen, et al. A waveform design method based on nonlinear frequency modulation and space-coding for coherent frequency diverse array radar[J]. Journal of Radars, 2021, 10(6): 822–832. doi: 10.12000/JR21008
    [127]
    BASIT A, WANG Wenqin, NUSENU S Y, et al. Cognitive FDA-MIMO with channel uncertainty information for target tracking[J]. IEEE Transactions on Cognitive Communications and Networking, 2019, 5(4): 963–975. doi: 10.1109/TCCN.2019.2928799
    [128]
    DING Zihang and XIE Junwei. Joint transmit and receive beamforming for cognitive FDA-MIMO radar with moving target[J]. IEEE Sensors Journal, 2021, 21(18): 20878–20885. doi: 10.1109/JSEN.2021.3100332
    [129]
    RUBINSTEIN N and TABRIKIAN J. Frequency diverse array signal optimization: From non-cognitive to cognitive radar[J]. IEEE Transactions on Signal Processing, 2021, 69: 6206–6220. doi: 10.1109/TSP.2021.3122091
  • Relative Articles

    [1]WAN Hao, LIANG Jing. HRRP Unsupervised Target Feature Extraction Method Based on Multiple Contrastive Loss in Radar Sensor Networks[J]. Journal of Radars. doi: 10.12000/JR24200
    [2]ZHOU Xueke, LIU Chang, ZHOU Bin. Ship Detection in SAR Images Based on Multiscale Feature Fusion and Channel Relation Calibration of Features[J]. Journal of Radars, 2021, 10(4): 531-543. doi: 10.12000/JR21021
    [3]LI Meng, LIU Chang. Super-resolution Reconstruction of SAR Images Based on Feature Reuse Dilated-Residual Convolutional Neural Networks[J]. Journal of Radars, 2020, 9(2): 363-372. doi: 10.12000/JR19110
    [4]ZHANG Xiaoling, ZHANG Tianwen, SHI Jun, WEI Shunjun. High-speed and High-accurate SAR Ship Detection Based on a Depthwise Separable Convolution Neural Network[J]. Journal of Radars, 2019, 8(6): 841-851. doi: 10.12000/JR19111
    [5]He Qifang, Zhang Qun, Luo Ying, Li Kaiming. A Sinusoidal Frequency Modulation Fourier-Bessel Transform and its Application to Micro-Doppler Feature Extraction[J]. Journal of Radars, 2018, 7(5): 593-601. doi: 10.12000/JR17069
    [6]Zhang Qun, Hu Jian, Luo Ying, Chen Yijun. Research Progresses in Radar Feature Extraction, Imaging, and Recognition of Target with Micro-motions[J]. Journal of Radars, 2018, 7(5): 531-547. doi: 10.12000/JR18049
    [7]Yang Qi, Deng Bin, Wang Hongqiang, Qin Yuliang. Advancements in Research on Micro-motion Feature Extraction in the Terahertz Region[J]. Journal of Radars, 2018, 7(1): 22-45. doi: 10.12000/JR17087
    [8]Wen Gongjian, Zhu Guoqiang, Yin Hongcheng, Xing Mengdao, Yang Hu, Ma Conghui, Yan Hua, Ding Baiyuan, Zhong Jinrong. SAR ATR Based on 3D Parametric Electromagnetic Scattering Model[J]. Journal of Radars, 2017, 6(2): 115-135. doi: 10.12000/JR17034
    [9]Zeng Lina, Zhou Deyun, Li Xiaoyang, Zhang Kun. Novel SAR Target Detection Algorithm Using Free Training[J]. Journal of Radars, 2017, 6(2): 177-185. doi: 10.12000/JR16114
    [10]Kang Miao, Ji Kefeng, Leng Xiangguang, Xing Xiangwei, Zou Huanxin. SAR Target Recognition with Feature Fusion Based on Stacked Autoencoder[J]. Journal of Radars, 2017, 6(2): 167-176. doi: 10.12000/JR16112
    [11]Zhang Jingjing, Hong Wen, Yin Qiang. Robust Distributed-target-based Calibration Method for Polarimetric SAR Using Spherically Truncated Covariance Matrix[J]. Journal of Radars, 2016, 5(6): 701-710. doi: 10.12000/JR16138
    [12]Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097
    [13]Ji Kefeng, Wang Haibo, Leng Xiangguang, Xing Xiangwei, Kang Lihong. Spaceborne Compact Polarimetric Synthetic Aperture Radar for Ship Detection[J]. Journal of Radars, 2016, 5(6): 607-619. doi: 10.12000/JR16083
    [14]HAN Ping, WANG Huan. Synthetic Aperture Radar Target Feature Extraction and Recognition Based on Improved Sparsity Preserving Projections[J]. Journal of Radars, 2015, 4(6): 674-680. doi: 10.12000/JR15068
    [15]Wang Lu, Zhang Fan, Li Wei, Xie Xiao-ming, Hu Wei. A Method of SAR Target Recognition Based on Gabor Filter and Local Texture Feature Extraction[J]. Journal of Radars, 2015, 4(6): 658-665. doi: 10.12000/JR15076
    [16]Zhang Zhi-long, Yang Wei-ping, Li Ji-cheng. Remote Sensing Image Feature Extracting Based Multiple Ant Colonies Cooperation[J]. Journal of Radars, 2014, 3(1): 92-100. doi: 10.3724/SP.J.1300.2014.13129
    [17]Lu Ping-ping, Du Kang-ning, Yu Wei-dong, Wang Yu, Deng Yun-Kai. Feature Fusion Based Road Extraction for HJ-1-C SAR Image[J]. Journal of Radars, 2014, 3(3): 352-360. doi: DOI: 10.3724/SP.J.1300.2013.13059
    [18]Zhang Jian-jun, Cao Jie, Wang Yuan-yuan. Gradient Algorithm on Stiefel Manifold and Application in Feature Extraction[J]. Journal of Radars, 2013, 2(3): 309-313. doi: 10.3724/SP.J.1300.2013.13048
    [19]Meng Da-di, Hu Yu-xin, Ding Chi-biao. An Efficient Algorithm to Processing SAR Data on GPU[J]. Journal of Radars, 2013, 2(2): 210-217. doi: 10.3724/SP.J.1300.2013.20098
    [20]Meng Da-di, Hu Yu-xin, Shi Tao, Sun Rui, Li Xiao-bo. Airborne SAR Real-time Imaging Algorithm Design and Implementation with CUDA on NVIDIA GPU[J]. Journal of Radars, 2013, 2(4): 481-491. doi: 10.3724/SP.J.1300.2013.13056
  • Cited by

    Periodical cited type(6)

    1. 郁成阳,周婉婷,徐海洲,刘磊,杨君. 非合作式双基地雷达系统设计与验证. 雷达科学与技术. 2024(02): 119-125 .
    2. 吕敏,孙清洋,刘乐. 基于非合作雷达的外源雷达直达波参数提取方法. 电子技术与软件工程. 2023(04): 64-69 .
    3. 庄敬敏,宋杰,熊伟,王中训. 非合作辐射源双基地雷达技术综述. 探测与控制学报. 2023(04): 35-45+69 .
    4. 蒋威,马超,郑园园,曹健. 基于高频外辐射信号的探测效能评估研究. 电子技术与软件工程. 2022(14): 88-93 .
    5. 裴家正,黄勇,陈宝欣,关键,蔡咪,陈小龙. 联合脉压与Radon傅里叶变换的长时间相参积累方法. 雷达学报. 2021(06): 956-969 . 本站查看
    6. 朱拥建,刘远,石林艳,王宏. 非合作侦察定位系统的关键技术. 太赫兹科学与电子信息学报. 2018(03): 452-457 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.3 %FULLTEXT: 11.3 %META: 79.2 %META: 79.2 %PDF: 9.6 %PDF: 9.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.6 %其他: 18.6 %其他: 0.1 %其他: 0.1 %China: 0.9 %China: 0.9 %[]: 0.0 %[]: 0.0 %上海: 0.5 %上海: 0.5 %东莞: 0.0 %东莞: 0.0 %佛山: 0.0 %佛山: 0.0 %六安: 0.0 %六安: 0.0 %包头: 0.0 %包头: 0.0 %北京: 14.2 %北京: 14.2 %北京市: 0.2 %北京市: 0.2 %南京: 0.5 %南京: 0.5 %南宁: 0.1 %南宁: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.2 %台州: 0.2 %合肥: 0.1 %合肥: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %巴塞罗那: 0.1 %巴塞罗那: 0.1 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %广安: 0.1 %广安: 0.1 %广州: 0.1 %广州: 0.1 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.1 %张家口市: 0.1 %张家界: 0.1 %张家界: 0.1 %成都: 0.1 %成都: 0.1 %无锡: 0.0 %无锡: 0.0 %朔州: 0.0 %朔州: 0.0 %杭州: 1.2 %杭州: 1.2 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.0 %济南: 0.0 %深圳: 0.2 %深圳: 0.2 %深圳市: 0.0 %深圳市: 0.0 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.1 %漯河: 0.1 %潍坊: 0.1 %潍坊: 0.1 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.2 %石家庄: 0.2 %石家庄市: 0.1 %石家庄市: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %纽约: 0.2 %纽约: 0.2 %芒廷维尤: 17.3 %芒廷维尤: 17.3 %芝加哥: 0.2 %芝加哥: 0.2 %萨默维尔: 0.1 %萨默维尔: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 39.9 %西宁: 39.9 %西安: 0.6 %西安: 0.6 %诺沃克: 0.0 %诺沃克: 0.0 %运城: 0.0 %运城: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.2 %郑州: 0.2 %银川: 0.0 %银川: 0.0 %长沙: 0.3 %长沙: 0.3 %其他其他China[]上海东莞佛山六安包头北京北京市南京南宁台北台州合肥嘉兴巴塞罗那常州常德广安广州张家口张家口市张家界成都无锡朔州杭州武汉沈阳济南深圳深圳市湘潭漯河潍坊珠海石家庄石家庄市秦皇岛纽约芒廷维尤芝加哥萨默维尔衢州西宁西安诺沃克运城邯郸郑州银川长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(1)

    Article views(2717) PDF downloads(452) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint