Volume 11 Issue 5
Oct.  2022
Turn off MathJax
Article Contents
GUAN Jian, PEI Jiazheng, HUANG Yong, et al. Time-range focus-before-detect method in clutter background[J]. Journal of Radars, 2022, 11(5): 753–764. doi: 10.12000/JR22115
Citation: GUAN Jian, PEI Jiazheng, HUANG Yong, et al. Time-range focus-before-detect method in clutter background[J]. Journal of Radars, 2022, 11(5): 753–764. doi: 10.12000/JR22115

Time-Range Focus-Before-Detect Method in Clutter Background

doi: 10.12000/JR22115
Funds:  The National Natural Science Foundation of China (62222120, 61871391), The Natural Science Foundation of Shandong Province (ZR2021YQ43), The Infrastructure Strengthening Program (2019-JCJQ-JJ-058), Shandong Province Higher Education Youth Innovation Science and Technology Support Program (2019KJN026)
More Information
  • Corresponding author: GUAN Jian, guanjian_68@163.com; PEI Jiazheng, 2832578539@qq.com
  • Received Date: 2022-06-14
  • Accepted Date: 2022-07-22
  • Rev Recd Date: 2022-07-20
  • Available Online: 2022-07-28
  • Publish Date: 2022-08-08
  • The traditional coherent radar signal processing generally adopts the cascaded processing method of pulse compression and Radon-Fourier Transform (RFT) for a target moving across the range cell. However, the cascaded processing exhibits the following problems: first, during the energy integration of a high-speed target, problems including the offset of the target peak, even broadening of the main lobe, gain reduction and increases in the side lobes will occur; second, the lack of effective clutter suppression affects the detection of weak targets. Based on the multi-dimensional signal combination and clutter suppression, this paper proposes a Time-Range Focus-Before-Detect method (Adaptive-Pulse Compression Radon-Fourier Transform, A-PCRFT) in clutter background, which combines the pulse compression, RFT and adaptive clutter suppression. First, the method combines the two radar signal processing dimensions of intra-pulse time (fast time) and inter-pulse time (slow time). The two-dimensional steering vector corresponding to the high-speed target is introduced to compensate for the intra-pulse time and inter-pulse Doppler shifts; Then, the clutter covariance matrix before pulse compression is estimated based on the secondary data; Finally, the optimal filter weight vector is determined according to the clutter covariance matrix and the steering vector. This method can effectively suppress the clutter and focus the target energy simultaneously in the range-velocity space. Simulation results show that this method is superior to the cascaded method, which adopts the pulse compression and adaptive Radon–Fourier transform.

     

  • loading
  • [1]
    GRECO M, GINI F, and FARINA A. Radar detection and classification of jamming signals belonging to a cone class[J]. IEEE Transactions on Signal Processing, 2008, 56(5): 1984–1993. doi: 10.1109/TSP.2007.909326
    [2]
    闫亮. 强杂波环境下微弱目标自适应检测方法研究[D]. [博士论文], 北京理工大学, 2018.

    YAN Liang. Research on adaptive detection methods of weak target in heavy clutter scenario[D]. [Ph. D. dissertation], Beijing Institute of Technology, 2018.
    [3]
    WANG Chunlei, JIU Bo, and LIU Hongwei. Maneuvering target detection in random pulse repetition interval radar via resampling-keystone transform[J]. Signal Processing, 2021, 181: 107899. doi: 10.1016/j.sigpro.2020.107899
    [4]
    WAN Jun, TAN Xiaoheng, CHEN Zhanye, et al. Refocusing of ground moving targets with Doppler ambiguity using keystone transform and modified second-order keystone transform for synthetic aperture radar[J]. Remote Sensing, 2021, 13(2): 117. doi: 10.3390/rs13020177
    [5]
    KONG Lingjiang, LI Xiaolong, CUI Guolong, et al. Coherent integration algorithm for a maneuvering target with High-Order range migration[J]. IEEE Transactions on Signal Processing, 2015, 63(17): 4474–4486. doi: 10.1109/TSP.2015.2437844
    [6]
    LI Xiaolong, CUI Guolong, YI Wei, et al. Manoeuvring target detection based on keystone transform and Lv's distribution[J]. IET Radar, Sonar & Navigation, 2016, 10(7): 1234–1242. doi: 10.1049/iet-rsn.2015.0488
    [7]
    KIRKLAND D. Imaging moving targets using the second-order keystone transform[J]. IET Radar, Sonar & Navigation, 2011, 5(8): 902–910. doi: 10.1049/iet-rsn.2010.0304
    [8]
    DAI Chunyang, ZHANG Xiaoling, and SHI Jun. Range cell migration correction for bistatic SAR image formation[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(1): 124–128. doi: 10.1109/LGRS.2011.2162056
    [9]
    XU Jia, YU Ji, PENG Yingning, et al. Radon-Fourier transform for radar target detection, I: Generalized Doppler filter bank[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(2): 1186–1202. doi: 10.1109/TAES.2011.5751251
    [10]
    XU Jia, YU Ji, PENG Yingning, et al. Radon-Fourier transform for radar target detection (II): Blind speed sidelobe suppression[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2473–2489. doi: 10.1109/TAES.2011.6034645
    [11]
    YU Ji, XU Jia, PENG Yingning, et al. Radon-Fourier transform for radar target detection (III): Optimality and fast implementations[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 991–1004. doi: 10.1109/TAES.2012.6178044
    [12]
    TIAN Jing, CUI Wei, SHEN Qing, et al. High-speed maneuvering target detection approach based on joint RFT and keystone transform[J]. Science China Information Sciences, 2013, 56(6): 1–13. doi: 10.1007/s11432-013-4880-z
    [13]
    XU Jia, YU Ji, PENG Yingning, et al. Space-time radon-Fourier transform and applications in radar target detection[J]. IET Radar, Sonar & Navigation, 2012, 6(9): 846–857. doi: 10.1049/iet-rsn.2011.0132
    [14]
    许稼, 彭应宁, 夏香根, 等. 空时频检测前聚焦雷达信号处理方法[J]. 雷达学报, 2014, 3(2): 129–141. doi: 10.3724/SP.J.1300.2014.14023

    XU Jia, PENG Yingning, XIA Xianggen, et al. Radar signal processing method of space-time-frequency focus-before-detects[J]. Journal of Radars, 2014, 3(2): 129–141. doi: 10.3724/SP.J.1300.2014.14023
    [15]
    XU Jia, YU Ji, PENG Yingning, et al. Focus-before-detect for radar target detection[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 430–433.
    [16]
    CHEN Xiaolong, GUAN Jian, LIU Ningbo, et al. Maneuvering target detection via radon-fractional Fourier transform-based long-time coherent integration[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 939–953. doi: 10.1109/TSP.2013.2297682
    [17]
    CHEN Xiaolong, GUAN Jian, HUANG Yong, et al. Radon-linear canonical ambiguity function-based detection and estimation method for marine target with micromotion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(4): 2225–2240. doi: 10.1109/TGRS.2014.2358456
    [18]
    关键. 雷达海上目标特性综述[J]. 雷达学报, 2020, 9(4): 674–683. doi: 10.12000/JR20114

    GUAN Jian. Summary of marine radar target characteristics[J]. Journal of Radars, 2020, 9(4): 674–683. doi: 10.12000/JR20114
    [19]
    KELLY E J. An adaptive detection algorithm[J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, AES-22(2): 115–127. doi: 10.1109/TAES.1986.310745
    [20]
    XU Jia, YAN Liang, ZHOU Xu, et al. Adaptive radon-Fourier transform for weak radar target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(4): 1641–1663. doi: 10.1109/TAES.2018.2798358
    [21]
    YOU Pengjie, DING Zegang, QIAN Lichang, et al. A motion parameter estimation method for radar maneuvering target in Gaussian clutter[J]. IEEE Transactions on Signal Processing, 2019, 67(20): 5433–5446. doi: 10.1109/TSP.2019.2939082
    [22]
    DING Zegang, YOU Pengjie, QIAN Lichang, et al. A subspace hybrid integration method for high-speed and maneuvering target detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(1): 630–644. doi: 10.1109/TAES.2019.2919478
    [23]
    裴家正, 黄勇, 陈宝欣, 等. 联合脉压与Radon傅里叶变换的长时间相参积累方法[J]. 雷达学报, 2021, 10(6): 956–969. doi: 10.12000/JR21068

    PEI Jiazheng, HUANG Yong, CHEN Baoxin, et al. Long time coherent integration method based on combining pulse compression and Radon-Fourier transform[J]. Journal of Radars, 2021, 10(6): 956–969. doi: 10.12000/JR21068
    [24]
    吴兆平, 符渭波, 苏涛, 等. 基于快速Radon-Fourier变换的雷达高速目标检测[J]. 电子与信息学报, 2012, 34(8): 1866–1871. doi: 10.3724/SP.J.1146.2011.01180

    WU Zhaoping, FU Weibo, SU Tao, et al. High speed radar target detection based on fast Radon-Fourier transform[J]. Journal of Electronics &Information Technology, 2012, 34(8): 1866–1871. doi: 10.3724/SP.J.1146.2011.01180
    [25]
    钱李昌, 许稼, 孙文峰, 等. 基于多载频MIMO雷达的Radon-Fourier变换盲速旁瓣抑制[J]. 航空学报, 2013, 34(5): 1181–1190. doi: 10.7527/S1000-6893.2013.0073

    QIAN Lichang, XU Jia, SUN Wenfeng, et al. Blind speed side lobe suppression in Radon-Fourier transform based on MIMO radar with multi-carrier frequency[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1181–1190. doi: 10.7527/S1000-6893.2013.0073
    [26]
    REED I S, MALLETT J D, and BRENNAN L E. Rapid convergence rate in adaptive arrays[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(6): 853–863. doi: 10.1109/TAES.1974.307893
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(986) PDF downloads(122) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint