Volume 11 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
DONG Shuxian, WU Yaojun, FANG Wen, et al. Anti-interrupted sampling repeater jamming method based on frequency-agile radar joint fuzzy C-means[J]. Journal of Radars, 2022, 11(2): 289–300. doi: 10.12000/JR21205
Citation: DONG Shuxian, WU Yaojun, FANG Wen, et al. Anti-interrupted sampling repeater jamming method based on frequency-agile radar joint fuzzy C-means[J]. Journal of Radars, 2022, 11(2): 289–300. doi: 10.12000/JR21205

Anti-interrupted Sampling Repeater Jamming Method Based on Frequency-agile Radar Joint Fuzzy C-means

DOI: 10.12000/JR21205
Funds:  The National Natural Science Foundation of China (61772397), The Shaanxi Provincial Science Fund for Distinguished Young Scholars (2021JC-23)
More Information
  • Corresponding author: QUAN Yinghui, yhquan@mail.xidian.edu.cn
  • Received Date: 2021-12-16
  • Accepted Date: 2022-03-08
  • Rev Recd Date: 2022-03-06
  • Available Online: 2022-03-14
  • Publish Date: 2022-03-29
  • Intermittent sampling noise modulation and forward jamming is a novel active jamming method with both suppression and deception characteristics and is a challenge often encountered in radar anti-jamming. To improve the capability of frequency-agile radar to resist noise-modulated Intermittent Sampling Repeater Jamming (ISRJ), we propose an anti-ISRJ method based on frequency-agile radar joint Fuzzy C-Means (FCM). First, we designed a radar-transmitted waveform with intra pulse frequency coding and inter pulse frequency agility. Second, after receiving the echo signal, we obtained the sub pulse signals corresponding to different intra-pulse frequency codes via narrow-band filtering in the frequency domain. Third, we adopted the FCM algorithm to determine the presence of ISRJs in the sub pulses after pulse compression. Finally, we realized the phase-coherent accumulation of inter pulse frequency-hopping waveform using the compressed sensing algorithm. Theoretical analysis and simulation experiments showed that the proposed method can effectively resist ISRJ.

     

  • loading
  • [1]
    ZHANG Yu, JIU Bo, WANG Penghui, et al. An end-to-end anti-jamming target detection method based on CNN[J]. IEEE Sensors Journal, 2021, 21(19): 21817–21828. doi: 10.1109/JSEN.2021.3103042
    [2]
    殷加鹏, 李健兵, 庞晨, 等. 一种极化-多普勒气象雷达的射频干扰滤波方法[J]. 雷达学报, 2021, 10(6): 905–918. doi: 10.12000/JR21102

    YIN Jiapeng, LI Jianbing, PANG Chen, et al. A radio frequency interference mitigation method for polarimetric doppler weather radars[J]. Journal of Radars, 2021, 10(6): 905–918. doi: 10.12000/JR21102
    [3]
    黄大通, 邢世其, 刘业民, 等. 基于噪声卷积调制的SAR虚假信号生成新方法[J]. 雷达学报, 2020, 9(5): 898–907. doi: 10.12000/JR20094

    HUANG Datong, XING Shiqi, LIU Yemin, et al. Fake SAR signal generation method based on noise convolution modulation[J]. Journal of Radars, 2020, 9(5): 898–907. doi: 10.12000/JR20094
    [4]
    WEN Cai, PENG Jinye, ZHOU Yan, et al. Enhanced three-dimensional joint domain localized STAP for airborne FDA-MIMO radar under dense false-target jamming scenario[J]. IEEE Sensors Journal, 2018, 18(10): 4154–4166. doi: 10.1109/JSEN.2018.2820905
    [5]
    万显荣, 吕敏, 谢德强, 等. 基于信号结构特点的外源雷达干扰方法研究[J]. 雷达学报, 2020, 9(6): 987–997. doi: 10.12000/JR20124

    WAN Xianrong, LV Min, XIE Deqiang, et al. Jamming method of passive radar systems based on characteristics of signal structure[J]. Journal of Radars, 2020, 9(6): 987–997. doi: 10.12000/JR20124
    [6]
    SUN Qingyang, SHU Ting, YU K B, et al. A novel deceptive jamming method against two-channel SAR-GMTI based on two jammers[J]. IEEE Sensors Journal, 2019, 19(14): 5600–5610. doi: 10.1109/JSEN.2019.2908030
    [7]
    LAN Lan, LIAO Guisheng, XU Jingwei, et al. Suppression approach to main-beam deceptive jamming in FDA-MIMO radar using nonhomogeneous sample detection[J]. IEEE Access, 2018, 6: 34582–34597. doi: 10.1109/ACCESS.2018.2850816
    [8]
    LU Xingyu, ZHAO Yujiu, YANG Jianhao, et al. An efficient method for single-channel SAR target reconstruction under severe deceptive jamming[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(2): 237–241. doi: 10.1109/LGRS.2019.2918838
    [9]
    黄岩, 赵博, 陶明亮, 等. 合成孔径雷达抗干扰技术综述[J]. 雷达学报, 2020, 9(1): 86–106. doi: 10.12000/JR19113

    HUANG Yan, ZHAO Bo, TAO Mingliang, et al. Review of synthetic aperture radar interference suppression[J]. Journal of Radars, 2020, 9(1): 86–106. doi: 10.12000/JR19113
    [10]
    LI Yuntao, JIA Xin, CHEN Yongguang, et al. Frequency agility MIMO-SAR imaging and anti-deception jamming performance[C]. The 31th URSI General Assembly and Scientific Symposium, Beijing, 2014: 1–4.
    [11]
    于海波, 李晓, 李倩, 等. 脉间随机捷变频脉冲多普勒引信技术[J]. 航空兵器, 2021, 28(1): 50–54. doi: 10.12132/ISSN.1673-5048.2019.0135

    YU Haibo, LI Xiao, LI Qian, et al. Pulse doppler fuze based on pulse-to-pulse random frequency agility technology[J]. Aero Weaponry, 2021, 28(1): 50–54. doi: 10.12132/ISSN.1673-5048.2019.0135
    [12]
    HUANG Tianyao, LIU Yimin, XU Xingyu, et al. Analysis of frequency agile radar via compressed sensing[J]. IEEE Transactions on Signal Processing, 2018, 66(23): 6228–6240. doi: 10.1109/TSP.2018.2876301
    [13]
    董淑仙, 全英汇, 陈侠达, 等. 基于捷变频联合数学形态学的干扰抑制算法[J]. 系统工程与电子技术, 2020, 42(7): 1491–1498. doi: 10.3969/j.issn.1001-506X.2020.07.09

    DONG Shuxian, QUAN Yinghui, CHEN Xiada, et al. Interference suppression algorithm based on frequency agility combined with mathematical morphology[J]. Systems Engineering and Electronics, 2020, 42(7): 1491–1498. doi: 10.3969/j.issn.1001-506X.2020.07.09
    [14]
    王雪松, 刘建成, 张文明, 等. 间歇采样转发干扰的数学原理[J]. 中国科学 E辑:信息科学, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007

    WANG Xuesong, LIU Jiancheng, ZHANG Wenming, et al. Mathematic principles of interrupted-sampling repeater jamming (ISRJ)[J]. Science in China Series F:Information Sciences, 2006, 36(8): 891–901. doi: 10.3969/j.issn.1674-7259.2006.08.007
    [15]
    WU Wenzhen, ZOU Jiangwei, CHEN Jian, et al. False-target recognition against interrupted-sampling repeater jamming based on integration decomposition[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(5): 2979–2991. doi: 10.1109/TAES.2021.3068443
    [16]
    周超, 刘泉华, 胡程. 间歇采样转发式干扰的时频域辨识与抑制[J]. 雷达学报, 2019, 8(1): 100–106. doi: 10.12000/JR18080

    ZHOU Chao, LIU Quanhua, and HU Cheng. Time-frequency analysis techniques for recognition and suppression of interrupted sampling repeater jamming[J]. Journal of Radars, 2019, 8(1): 100–106. doi: 10.12000/JR18080
    [17]
    杨少奇, 田波, 周瑞钊. 利用时频分析的间歇采样干扰对抗方法[J]. 信号处理, 2016, 32(10): 1244–1251. doi: 10.16798/j.issn.1003-0530.2016.10.14

    YANG Shaoqi, TIAN Bo, and ZHOU Ruizhao. ECCM against interrupted sampling repeater jamming based on time-frequency analysis[J]. Journal of Signal Processing, 2016, 32(10): 1244–1251. doi: 10.16798/j.issn.1003-0530.2016.10.14
    [18]
    张建中, 穆贺强, 文树梁, 等. 基于脉内步进LFM波形的抗间歇采样转发干扰方法[J]. 系统工程与电子技术, 2019, 41(5): 1013–1020. doi: 10.3969/j.issn.1001-506X.2019.05.12

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti interrupted-sampling repeater jamming method based on stepped LFM waveform[J]. Systems Engineering and Electronics, 2019, 41(5): 1013–1020. doi: 10.3969/j.issn.1001-506X.2019.05.12
    [19]
    张建中, 穆贺强, 文树梁, 等. 基于脉内LFM-Costas频率步进的抗间歇采样干扰方法[J]. 系统工程与电子技术, 2019, 41(10): 2170–2177. doi: 10.3969/j.issn.1001-506X.2019.10.03

    ZHANG Jianzhong, MU Heqiang, WEN Shuliang, et al. Anti-intermittent sampling jamming method based on intra-pulse LFM-Costas frequency stepping[J]. Systems Engineering and Electronics, 2019, 41(10): 2170–2177. doi: 10.3969/j.issn.1001-506X.2019.10.03
    [20]
    ZHAO Feng, TIAN Min, XIE Wen, et al. A new parallel dual-channel fully convolutional network via semi-supervised FCM for PolSAR image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4493–4505. doi: 10.1109/JSTARS.2020.3014966
    [21]
    黄平平, 任慧芳, 谭维贤, 等. 基于地基雷达图像的无监督变化检测[J]. 雷达学报, 2020, 9(3): 514–524. doi: 10.12000/JR20004

    HUANG Pingping, REN Huifang, TAN Weixian, et al. Unsupervised change detection using ground-based radar image[J]. Journal of Radars, 2020, 9(3): 514–524. doi: 10.12000/JR20004
    [22]
    GAO Bo and WANG Jun. Multi-objective fuzzy clustering for synthetic aperture radar imagery[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(11): 2341–2345. doi: 10.1109/LGRS.2015.2477500
    [23]
    LI Yuhan, HUANG Tianyao, XU Xingyu, et al. Phase transitions in frequency agile radar using compressed sensing[J]. IEEE Transactions on Signal Processing, 2021, 69: 4801–4818. doi: 10.1109/TSP.2021.3099629
    [24]
    QUAN Yinghui, WU Yaojun, LI Yachao, et al. Range Doppler reconstruction for frequency agile and PRF-jittering radar[J]. IET Radar, Sonar & Navigation, 2018, 12(3): 348–352. doi: 10.1049/iet-rsn.2017.0421
    [25]
    QUAN Yinghui, LI Yachao, WU Yaojun, et al. Moving target detection for frequency agility radar by sparse reconstruction[J]. Review of Scientific Instruments, 2016, 87(9): 094703. doi: 10.1063/1.4962700
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(1159) PDF downloads(203) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint