Citation: | XU Hexiu, WANG Yanzhao, WANG Chaohui, et al. Research progress of multifunctional metasurfaces based on multiplexing concept[J]. Journal of Radars, 2021, 10(2): 191–205. doi: 10.12000/JR21037 |
[1] |
SHELBY R A, SMITH D R, and SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(6): 77–79. doi: 10.1126/science.1058847
|
[2] |
YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
|
[3] |
SUN Shulin, HE Qiong, XIAO Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431. doi: 10.1038/nmat3292
|
[4] |
GLYBOVSKI S B, TRETYAKOV S A, BELOV P A, et al. Metasurfaces: From microwaves to visible[J]. Physics Reports, 2016, 634: 1–72. doi: 10.1016/j.physrep.2016.04.004
|
[5] |
JIANG Qiang, JIN Guofan, and CAO Liangcai. When metasurface meets hologram: Principle and advances[J]. Advances in Optics and Photonics, 2019, 11(3): 518–576. doi: 10.1364/AOP.11.000518
|
[6] |
CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3: e218. doi: 10.1038/lsa.2014.99
|
[7] |
SUN Shulin, HE Qiong, HAO Jiaming, et al. Electromagnetic metasurfaces: Physics and applications[J]. Advances in Optics and Photonics, 2019, 11(2): 380–479. doi: 10.1364/AOP.11.000380
|
[8] |
HUANG Yaowei, XU Hexiu, SUN Shang, et al. Structured semiconductor interfaces: Active functionality on light manipulation[J]. Proceedings of the IEEE, 2020, 108(5): 772–794. doi: 10.1109/JPROC.2019.2919675
|
[9] |
SHALTOUT A M, SHALAEV V M, and BRONGERSMA M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100
|
[10] |
HUANG Lingling, MÜHLENBERND H, LI Xiaowei, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444–6449. doi: 10.1002/adma.201502541
|
[11] |
WEN Dandan, YUE Fuyong, LI Guixin, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi: 10.1038/ncomms9241
|
[12] |
ZHANG Chunmei, YUE Fuyong, WEN Dandan, et al. Multichannel metasurface for simultaneous control of holograms and twisted light beams[J]. ACS Photonics, 2017, 4(8): 1906–1912. doi: 10.1021/acsphotonics.7b00587
|
[13] |
MEHMOOD M Q, MEI Shengtao, HUSSAIN S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13): 2533–2539. doi: 10.1002/adma.201504532
|
[14] |
MAGUID E, YULEVICH I, VEKSLER D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202–1206. doi: 10.1126/science.aaf3417
|
[15] |
ZHOU Junxiao, QIAN Haoliang, HU Guangwei, et al. Broadband photonic spin hall meta-lens[J]. ACS Nano, 2018, 12(1): 82–88. doi: 10.1021/acsnano.7b07379
|
[16] |
BAO Yanjun, YU Ying, XU Haofei, et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding[J]. Advanced Functional Materials, 2018, 28(51): 1805306. doi: 10.1002/adfm.201805306
|
[17] |
XU Hexiu, TANG Shiwei, WANG Guangming, et al. Multifunctional microstrip array combining a linear polarizer and focusing metasurface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3676–3682. doi: 10.1109/TAP.2016.2565742
|
[18] |
CAI Tong, WANG Guangming, TANG Shiwei, et al. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces[J]. Physical Review Applied, 2017, 8(3): 034033. doi: 10.1103/PhysRevApplied.8.034033
|
[19] |
CAI Tong, TANG Shiwei, WANG Guangming, et al. High-performance bifunctional metasurfaces in transmission and reflection geometries[J]. Advanced Optical Materials, 2017, 5(2): 1600506. doi: 10.1002/adom.201600506
|
[20] |
MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
|
[21] |
KATS M A, GENEVET P, AOUST G, et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31): 12364–12368. doi: 10.1073/pnas.1210686109
|
[22] |
MA Huifeng, WANG Guizhen, KONG Gusheng, et al. Independent controls of differently-polarized reflected waves by anisotropic metasurfaces[J]. Scientific Reports, 2015, 5: 9605. doi: 10.1038/srep09605
|
[23] |
LIU Shuo, CUI Tiejun, XU Quan, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 2016, 5(5): e16076. doi: 10.1038/lsa.2016.76
|
[24] |
XU Hexiu, TANG Shiwei, LING Xiaohui, et al. Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking[J]. Annalen der Physik, 2017, 529(5): 1700045. doi: 10.1002/andp.201700045
|
[25] |
LIU Shuo, CUI Tiejun, NOOR A, et al. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves[J]. Light: Science & Applications, 2018, 7: 18008. doi: 10.1038/lsa.2018.8
|
[26] |
ZHANG Xin’ge, YU Qian, JIANG Weixiang, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382. doi: 10.1002/advs.201903382
|
[27] |
XU Hexiu, HAN Lei, LI Ying, et al. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control[J]. ACS Photonics, 2019, 6(1): 211–220. doi: 10.1021/acsphotonics.8b01439
|
[28] |
DING Guowen, CHEN Ke, LUO Xinyao, et al. Direct routing of intensity-editable multi-beams by dual geometric phase interference in metasurface[J]. Nanophotonics, 2020, 9(9): 2977–2987. doi: 10.1515/nanoph-2020-0203
|
[29] |
LI Shiqing, WANG Zhuo, DONG Shaohua, et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces[J]. Nanophotonics, 2020, 9(10): 3473–3481. doi: 10.1515/nanoph-2020-0200
|
[30] |
ZHANG Kuang, YUAN Yueyi, DING Xumin, et al. High-efficiency metalenses with switchable functionalities in microwave region[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28423–28430. doi: 10.1021/acsami.9b07102
|
[31] |
FAN Qingbin, LIU Mingze, ZHANG Cheng, et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 2020, 125(26): 267402. doi: 10.1103/PhysRevLett.125.267402
|
[32] |
YUAN Yueyi, ZHANG Kuang, RATNI B, et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]. Nature Communications, 2020, 11: 4186. doi: 10.1038/s41467-020-17773-6
|
[33] |
WANG Zuojia, JIA Hui, YAO Kan, et al. Circular dichroism metamirrors with near-perfect extinction[J]. ACS Photonics, 2016, 3(11): 2096–2101. doi: 10.1021/acsphotonics.6b00533
|
[34] |
YANG Shengyan, LIU Zhe, HU Sha, et al. Spin-selective transmission in chiral folded metasurfaces[J]. Nano Letters, 2019, 19(6): 3432–3439. doi: 10.1021/acs.nanolett.8b04521
|
[35] |
JING Liqiao, WANG Zuojia, MATURI R, et al. Gradient chiral metamirrors for spin-selective anomalous reflection[J]. Laser & Photonics Reviews, 2017, 11(6): 1700115. doi: 10.1002/lpor.201700115
|
[36] |
WANG Qiu, PLUM E, YANG Quanlong, et al. Reflective chiral meta-holography: Multiplexing holograms for circularly polarized waves[J]. Light: Science & Applications, 2018, 7: 25. doi: 10.1038/s41377-018-0019-8
|
[37] |
XU Hexiu, HU Guangwei, LI Ying, et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation[J]. Light: Science & Applications, 2019, 8: 3. doi: 10.1038/s41377-018-0113-y
|
[38] |
LI Zhancheng, LIU Wenwei, CHENG Hua, et al. Spin-selective full-dimensional manipulation of optical waves with chiral mirror[J]. Advanced Materials, 2020, 32(26): 1907983. doi: 10.1002/adma.201907983
|
[39] |
CAI Tong, WANG Guangming, XU Hexiu, et al. Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections[J]. Annalen der Physik, 2018, 530(1): 1700321. doi: 10.1002/andp.201700321
|
[40] |
YANG Jianing, WU Xiaoyu, SONG Jiakun, et al. Cascaded metasurface for simultaneous control of transmission and reflection[J]. Optics Express, 2019, 27(6): 9061–9070. doi: 10.1364/OE.27.009061
|
[41] |
AIETA F, KATS M A, GENEVET P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342–1345. doi: 10.1126/science.aaa2494
|
[42] |
HUANG Cheng, PAN Wenbo, MA Xiaoliang, et al. Multi-spectral metasurface for different functional control of reflection waves[J]. Scientific Reports, 2016, 6: 23291. doi: 10.1038/srep23291
|
[43] |
XU Hexiu, ZHANG Lei, KIM Y, et al. Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility[J]. Advanced Optical Materials, 2018, 6(10): 1800010. doi: 10.1002/adom.201800010
|
[44] |
AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8: 14992. doi: 10.1038/ncomms14992
|
[45] |
HUANG Lingxi, DUAN Yuping, DAI Xuhao, et al. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics[J]. Small, 2019, 15(40): 1902730. doi: 10.1002/smll.201902730
|
[46] |
BAI Guodong, MA Qian, IQBAL S, et al. Multitasking shared aperture enabled with multiband digital coding metasurface[J]. Advanced Optical Materials, 2018, 6(21): 1800657. doi: 10.1002/adom.201800657
|
[47] |
WANG Bo, DONG Fengliang, LI Qitong, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8): 5235–5240. doi: 10.1021/acs.nanolett.6b02326
|
[48] |
XIE Rensheng, XIN Minbo, CHEN Shiguo, et al. Frequency-multiplexed complex-amplitude meta-devices based on bispectral 2-bit coding meta-atoms[J]. Advanced Optical Materials, 2020, 8(24): 2000919. doi: 10.1002/adom.202000919
|
[49] |
LIU Guangyao, LI Long, HAN Jiaqi, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23554–23564. doi: 10.1021/acsami.0c02467
|
[50] |
KAMALI S M, ARBABI E, ARBABI A, et al. Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4): 041056. doi: 10.1103/PhysRevX.7.041056
|
[51] |
QIU Meng, JIA Min, MA Shaojie, et al. Angular dispersions in terahertz metasurfaces: Physics and applications[J]. Physical Review Applied, 2018, 9(5): 054050.
|
[52] |
ZHANG Xiyue, LI Qi, LIU Feifei, et al. Controlling angular dispersions in optical metasurfaces[J]. Light: Science & Applications, 2020, 9: 76. doi: 10.1038/s41377-020-0313-0
|
[53] |
LI Min, SHEN Lian, JING Liqiao, et al. Origami metawall: Mechanically controlled absorption and deflection of light[J]. Advanced Science, 2019, 6(23): 1901434. doi: 10.1002/advs.201901434
|
[54] |
LE D H, XU Ying, TENTZERIS M M, et al. Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response[J]. Extreme Mechanics Letters, 2020, 36: 100670. doi: 10.1016/j.eml.2020.100670
|
[55] |
ZHANG Yuanbo, TANG T T, GIRIT C, et al. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009, 459(7248): 820–823. doi: 10.1038/nature08105
|
[56] |
LU Angyu, ZHU Hanyu, XIAO Jun, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744–749. doi: 10.1038/nnano.2017.100
|
[57] |
YIN Xinghui, STEINLE T, HUANG Lingling, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17016. doi: 10.1038/lsa.2017.16
|
[58] |
YU Ping, LI Jianxiong, ZHANG Shuang, et al. Dynamic janus metasurfaces in the visible spectral region[J]. Nano Letters, 2018, 18(7): 4584–4589. doi: 10.1021/acs.nanolett.8b01848
|
[59] |
ZHANG Lei, WU Ruiyuan, BAI Guodong, et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Advanced Functional Materials, 2018, 28(33): 1802205. doi: 10.1002/adfm.201802205
|
[60] |
CHEN Ke, DING Guowen, HU Guangwei, et al. Directional Janus metasurface[J]. Advanced Materials, 2020, 32(2): 1906352. doi: 10.1002/adma.201906352
|
[61] |
ZHANG Chiben, WANG Guangming, XU Hexiu, et al. Helicity-dependent multifunctional metasurfaces for full-space wave control[J]. Advanced Optical Materials, 2020, 8(8): 1901719. doi: 10.1002/adom.201901719
|
[62] |
PAN Weikang, CAI Tong, TANG Shiwei, et al. Trifunctional metasurfaces: Concept and characterizations[J]. Optics Express, 2018, 26(13): 17447–17457. doi: 10.1364/OE.26.017447
|
[63] |
LUAN Jing, YANG Sikang, LIU Deming, et al. Polarization and direction-controlled asymmetric multifunctional metadevice for focusing, vortex and Bessel beam generation[J]. Optics Express, 2020, 28(3): 3732–3744. doi: 10.1364/OE.382580
|
[64] |
JIN Lei, DONG Zhaogang, MEI Shengtao, et al. Noninterleaved metasurface for (26–1) spin- and wavelength-encoded holograms[J]. Nano Letters, 2018, 18(12): 8016–8024. doi: 10.1021/acs.nanolett.8b04246
|
[65] |
WANG Qiu, ZHANG Xueqian, PLUM E, et al. Polarization and frequency multiplexed terahertz meta-holography[J]. Advanced Optical Materials, 2017, 5(14): 1700277. doi: 10.1002/adom.201700277
|
[66] |
XU Hexiu, HU Guangwei, JIANG Menghua, et al. Wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface[J]. Advanced Materials Technologies, 2020, 5(1): 1900710. doi: 10.1002/admt.201900710
|
[67] |
XU Hexiu, WANG Chaohui, WANG Yanzhao, et al. Spin-encoded wavelength-space multitasking Janus metasurfaces[J]. Advanced Optical Materials, 2020, 10.1002/adom.202100190: 2100190. doi: 10.1002/adom.202100190
|
[68] |
XU Hexiu, SUN Shulin, TANG Shiwei, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6: 27503. doi: 10.1038/srep27503
|
[69] |
XU Hexiu, TANG Shiwei, MA Shaojie, et al. Tunable microwave metasurfaces for high-performance operations: Dispersion compensation and dynamical switch[J]. Scientific Reports, 2016, 6: 38255. doi: 10.1038/srep38255
|
[70] |
XU Hexiu, TANG Shiwei, CAI Tong, et al. Multifunctional Metasurfaces: Design Principles and Device Realizations[M]. San Rafael, 2021: 1–184. doi: 10.2200/S01023ED1V01Y 202006MOP005.
|
[71] |
崔铁军, 吴浩天, 刘硕. 信息超材料研究进展[J]. 物理学报, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
CUI Tiejun, WU Haotian, and LIU Shuo. Research progress of information metamaterials[J]. Acta Physica Sinica, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
|
[72] |
QIAN Chao, ZHENG Bin, SHEN Yichen, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6): 383–390. doi: 10.1038/s41566-020-0604-2
|