Volume 10 Issue 2
Apr.  2021
Turn off MathJax
Article Contents
XU Hexiu, WANG Yanzhao, WANG Chaohui, et al. Research progress of multifunctional metasurfaces based on multiplexing concept[J]. Journal of Radars, 2021, 10(2): 191–205. doi: 10.12000/JR21037
Citation: XU Hexiu, WANG Yanzhao, WANG Chaohui, et al. Research progress of multifunctional metasurfaces based on multiplexing concept[J]. Journal of Radars, 2021, 10(2): 191–205. doi: 10.12000/JR21037

Research Progress of Multifunctional Metasurfaces Based on the Multiplexing Concept

DOI: 10.12000/JR21037
Funds:  The National Defense Program of China (2019-JCJQ-JJ-081), The Key Program of Natural Science Foundation of Shaanxi Province (2020JZ-33), The Youth Talent Lifting Project of the China Association for Science and Technology (17-JCJQ-QT-003), The Key Principal’s Fund of Air Force Engineering University (XNLX19030601)
More Information
  • Corresponding author: XU Hexiu, hxxuellen@gmail.com
  • Received Date: 2021-03-20
  • Rev Recd Date: 2021-04-17
  • Available Online: 2021-04-28
  • Publish Date: 2021-04-28
  • As a two-dimensional metamaterial equivalent, the gradient metasurface has become a focus of intense research hotspot since it exhibits powerful ability in manipulating electromagnetic waves due to its planar architecture, flexible selection between anisotropic and isotropic structures, and its abrupt discontinues phase. Here, we first reviewed recent research progress in multifunctional metasurfaces based on the multiplexing concept from a new perspective of combining one, two and even more degrees of freedom of polarization, frequency, incident angles and directions (excitation information), and output-wave position information. Therein, we achieve a clear outline of a research program and technical approach to multifunctional metasurfaces. Second, we predict future routes of development of multifunctional metasurfaces, aiming to afford novel avenues to the realization of more sophisticated and larger-capacity integrated wavefront control and multifunctional devices with new physics, which are promising for highly-integrated and miniaturized future communication and radar devices.

     

  • loading
  • [1]
    SHELBY R A, SMITH D R, and SCHULTZ S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(6): 77–79. doi: 10.1126/science.1058847
    [2]
    YU Nanfang, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333–337. doi: 10.1126/science.1210713
    [3]
    SUN Shulin, HE Qiong, XIAO Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426–431. doi: 10.1038/nmat3292
    [4]
    GLYBOVSKI S B, TRETYAKOV S A, BELOV P A, et al. Metasurfaces: From microwaves to visible[J]. Physics Reports, 2016, 634: 1–72. doi: 10.1016/j.physrep.2016.04.004
    [5]
    JIANG Qiang, JIN Guofan, and CAO Liangcai. When metasurface meets hologram: Principle and advances[J]. Advances in Optics and Photonics, 2019, 11(3): 518–576. doi: 10.1364/AOP.11.000518
    [6]
    CUI Tiejun, QI Meiqing, WAN Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light: Science & Applications, 2014, 3: e218. doi: 10.1038/lsa.2014.99
    [7]
    SUN Shulin, HE Qiong, HAO Jiaming, et al. Electromagnetic metasurfaces: Physics and applications[J]. Advances in Optics and Photonics, 2019, 11(2): 380–479. doi: 10.1364/AOP.11.000380
    [8]
    HUANG Yaowei, XU Hexiu, SUN Shang, et al. Structured semiconductor interfaces: Active functionality on light manipulation[J]. Proceedings of the IEEE, 2020, 108(5): 772–794. doi: 10.1109/JPROC.2019.2919675
    [9]
    SHALTOUT A M, SHALAEV V M, and BRONGERSMA M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100
    [10]
    HUANG Lingling, MÜHLENBERND H, LI Xiaowei, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444–6449. doi: 10.1002/adma.201502541
    [11]
    WEN Dandan, YUE Fuyong, LI Guixin, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi: 10.1038/ncomms9241
    [12]
    ZHANG Chunmei, YUE Fuyong, WEN Dandan, et al. Multichannel metasurface for simultaneous control of holograms and twisted light beams[J]. ACS Photonics, 2017, 4(8): 1906–1912. doi: 10.1021/acsphotonics.7b00587
    [13]
    MEHMOOD M Q, MEI Shengtao, HUSSAIN S, et al. Visible-frequency metasurface for structuring and spatially multiplexing optical vortices[J]. Advanced Materials, 2016, 28(13): 2533–2539. doi: 10.1002/adma.201504532
    [14]
    MAGUID E, YULEVICH I, VEKSLER D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202–1206. doi: 10.1126/science.aaf3417
    [15]
    ZHOU Junxiao, QIAN Haoliang, HU Guangwei, et al. Broadband photonic spin hall meta-lens[J]. ACS Nano, 2018, 12(1): 82–88. doi: 10.1021/acsnano.7b07379
    [16]
    BAO Yanjun, YU Ying, XU Haofei, et al. Coherent pixel design of metasurfaces for multidimensional optical control of multiple printing-image switching and encoding[J]. Advanced Functional Materials, 2018, 28(51): 1805306. doi: 10.1002/adfm.201805306
    [17]
    XU Hexiu, TANG Shiwei, WANG Guangming, et al. Multifunctional microstrip array combining a linear polarizer and focusing metasurface[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(8): 3676–3682. doi: 10.1109/TAP.2016.2565742
    [18]
    CAI Tong, WANG Guangming, TANG Shiwei, et al. High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces[J]. Physical Review Applied, 2017, 8(3): 034033. doi: 10.1103/PhysRevApplied.8.034033
    [19]
    CAI Tong, TANG Shiwei, WANG Guangming, et al. High-performance bifunctional metasurfaces in transmission and reflection geometries[J]. Advanced Optical Materials, 2017, 5(2): 1600506. doi: 10.1002/adom.201600506
    [20]
    MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: Independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
    [21]
    KATS M A, GENEVET P, AOUST G, et al. Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(31): 12364–12368. doi: 10.1073/pnas.1210686109
    [22]
    MA Huifeng, WANG Guizhen, KONG Gusheng, et al. Independent controls of differently-polarized reflected waves by anisotropic metasurfaces[J]. Scientific Reports, 2015, 5: 9605. doi: 10.1038/srep09605
    [23]
    LIU Shuo, CUI Tiejun, XU Quan, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light: Science & Applications, 2016, 5(5): e16076. doi: 10.1038/lsa.2016.76
    [24]
    XU Hexiu, TANG Shiwei, LING Xiaohui, et al. Flexible control of highly-directive emissions based on bifunctional metasurfaces with low polarization cross-talking[J]. Annalen der Physik, 2017, 529(5): 1700045. doi: 10.1002/andp.201700045
    [25]
    LIU Shuo, CUI Tiejun, NOOR A, et al. Negative reflection and negative surface wave conversion from obliquely incident electromagnetic waves[J]. Light: Science & Applications, 2018, 7: 18008. doi: 10.1038/lsa.2018.8
    [26]
    ZHANG Xin’ge, YU Qian, JIANG Weixiang, et al. Polarization-controlled dual-programmable metasurfaces[J]. Advanced Science, 2020, 7(11): 1903382. doi: 10.1002/advs.201903382
    [27]
    XU Hexiu, HAN Lei, LI Ying, et al. Completely spin-decoupled dual-phase hybrid metasurfaces for arbitrary wavefront control[J]. ACS Photonics, 2019, 6(1): 211–220. doi: 10.1021/acsphotonics.8b01439
    [28]
    DING Guowen, CHEN Ke, LUO Xinyao, et al. Direct routing of intensity-editable multi-beams by dual geometric phase interference in metasurface[J]. Nanophotonics, 2020, 9(9): 2977–2987. doi: 10.1515/nanoph-2020-0203
    [29]
    LI Shiqing, WANG Zhuo, DONG Shaohua, et al. Helicity-delinked manipulations on surface waves and propagating waves by metasurfaces[J]. Nanophotonics, 2020, 9(10): 3473–3481. doi: 10.1515/nanoph-2020-0200
    [30]
    ZHANG Kuang, YUAN Yueyi, DING Xumin, et al. High-efficiency metalenses with switchable functionalities in microwave region[J]. ACS Applied Materials & Interfaces, 2019, 11(31): 28423–28430. doi: 10.1021/acsami.9b07102
    [31]
    FAN Qingbin, LIU Mingze, ZHANG Cheng, et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 2020, 125(26): 267402. doi: 10.1103/PhysRevLett.125.267402
    [32]
    YUAN Yueyi, ZHANG Kuang, RATNI B, et al. Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces[J]. Nature Communications, 2020, 11: 4186. doi: 10.1038/s41467-020-17773-6
    [33]
    WANG Zuojia, JIA Hui, YAO Kan, et al. Circular dichroism metamirrors with near-perfect extinction[J]. ACS Photonics, 2016, 3(11): 2096–2101. doi: 10.1021/acsphotonics.6b00533
    [34]
    YANG Shengyan, LIU Zhe, HU Sha, et al. Spin-selective transmission in chiral folded metasurfaces[J]. Nano Letters, 2019, 19(6): 3432–3439. doi: 10.1021/acs.nanolett.8b04521
    [35]
    JING Liqiao, WANG Zuojia, MATURI R, et al. Gradient chiral metamirrors for spin-selective anomalous reflection[J]. Laser & Photonics Reviews, 2017, 11(6): 1700115. doi: 10.1002/lpor.201700115
    [36]
    WANG Qiu, PLUM E, YANG Quanlong, et al. Reflective chiral meta-holography: Multiplexing holograms for circularly polarized waves[J]. Light: Science & Applications, 2018, 7: 25. doi: 10.1038/s41377-018-0019-8
    [37]
    XU Hexiu, HU Guangwei, LI Ying, et al. Interference-assisted kaleidoscopic meta-plexer for arbitrary spin-wavefront manipulation[J]. Light: Science & Applications, 2019, 8: 3. doi: 10.1038/s41377-018-0113-y
    [38]
    LI Zhancheng, LIU Wenwei, CHENG Hua, et al. Spin-selective full-dimensional manipulation of optical waves with chiral mirror[J]. Advanced Materials, 2020, 32(26): 1907983. doi: 10.1002/adma.201907983
    [39]
    CAI Tong, WANG Guangming, XU Hexiu, et al. Bifunctional pancharatnam-berry metasurface with high-efficiency helicity-dependent transmissions and reflections[J]. Annalen der Physik, 2018, 530(1): 1700321. doi: 10.1002/andp.201700321
    [40]
    YANG Jianing, WU Xiaoyu, SONG Jiakun, et al. Cascaded metasurface for simultaneous control of transmission and reflection[J]. Optics Express, 2019, 27(6): 9061–9070. doi: 10.1364/OE.27.009061
    [41]
    AIETA F, KATS M A, GENEVET P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342–1345. doi: 10.1126/science.aaa2494
    [42]
    HUANG Cheng, PAN Wenbo, MA Xiaoliang, et al. Multi-spectral metasurface for different functional control of reflection waves[J]. Scientific Reports, 2016, 6: 23291. doi: 10.1038/srep23291
    [43]
    XU Hexiu, ZHANG Lei, KIM Y, et al. Wavenumber-splitting metasurfaces achieve multichannel diffusive invisibility[J]. Advanced Optical Materials, 2018, 6(10): 1800010. doi: 10.1002/adom.201800010
    [44]
    AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8: 14992. doi: 10.1038/ncomms14992
    [45]
    HUANG Lingxi, DUAN Yuping, DAI Xuhao, et al. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics[J]. Small, 2019, 15(40): 1902730. doi: 10.1002/smll.201902730
    [46]
    BAI Guodong, MA Qian, IQBAL S, et al. Multitasking shared aperture enabled with multiband digital coding metasurface[J]. Advanced Optical Materials, 2018, 6(21): 1800657. doi: 10.1002/adom.201800657
    [47]
    WANG Bo, DONG Fengliang, LI Qitong, et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms[J]. Nano Letters, 2016, 16(8): 5235–5240. doi: 10.1021/acs.nanolett.6b02326
    [48]
    XIE Rensheng, XIN Minbo, CHEN Shiguo, et al. Frequency-multiplexed complex-amplitude meta-devices based on bispectral 2-bit coding meta-atoms[J]. Advanced Optical Materials, 2020, 8(24): 2000919. doi: 10.1002/adom.202000919
    [49]
    LIU Guangyao, LI Long, HAN Jiaqi, et al. Frequency-domain and spatial-domain reconfigurable metasurface[J]. ACS Applied Materials & Interfaces, 2020, 12(20): 23554–23564. doi: 10.1021/acsami.0c02467
    [50]
    KAMALI S M, ARBABI E, ARBABI A, et al. Angle-multiplexed metasurfaces: Encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4): 041056. doi: 10.1103/PhysRevX.7.041056
    [51]
    QIU Meng, JIA Min, MA Shaojie, et al. Angular dispersions in terahertz metasurfaces: Physics and applications[J]. Physical Review Applied, 2018, 9(5): 054050.
    [52]
    ZHANG Xiyue, LI Qi, LIU Feifei, et al. Controlling angular dispersions in optical metasurfaces[J]. Light: Science & Applications, 2020, 9: 76. doi: 10.1038/s41377-020-0313-0
    [53]
    LI Min, SHEN Lian, JING Liqiao, et al. Origami metawall: Mechanically controlled absorption and deflection of light[J]. Advanced Science, 2019, 6(23): 1901434. doi: 10.1002/advs.201901434
    [54]
    LE D H, XU Ying, TENTZERIS M M, et al. Transformation from 2D meta-pixel to 3D meta-pixel using auxetic kirigami for programmable multifunctional electromagnetic response[J]. Extreme Mechanics Letters, 2020, 36: 100670. doi: 10.1016/j.eml.2020.100670
    [55]
    ZHANG Yuanbo, TANG T T, GIRIT C, et al. Direct observation of a widely tunable bandgap in bilayer graphene[J]. Nature, 2009, 459(7248): 820–823. doi: 10.1038/nature08105
    [56]
    LU Angyu, ZHU Hanyu, XIAO Jun, et al. Janus monolayers of transition metal dichalcogenides[J]. Nature Nanotechnology, 2017, 12(8): 744–749. doi: 10.1038/nnano.2017.100
    [57]
    YIN Xinghui, STEINLE T, HUANG Lingling, et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces[J]. Light: Science & Applications, 2017, 6(7): e17016. doi: 10.1038/lsa.2017.16
    [58]
    YU Ping, LI Jianxiong, ZHANG Shuang, et al. Dynamic janus metasurfaces in the visible spectral region[J]. Nano Letters, 2018, 18(7): 4584–4589. doi: 10.1021/acs.nanolett.8b01848
    [59]
    ZHANG Lei, WU Ruiyuan, BAI Guodong, et al. Transmission-reflection-integrated multifunctional coding metasurface for full-space controls of electromagnetic waves[J]. Advanced Functional Materials, 2018, 28(33): 1802205. doi: 10.1002/adfm.201802205
    [60]
    CHEN Ke, DING Guowen, HU Guangwei, et al. Directional Janus metasurface[J]. Advanced Materials, 2020, 32(2): 1906352. doi: 10.1002/adma.201906352
    [61]
    ZHANG Chiben, WANG Guangming, XU Hexiu, et al. Helicity-dependent multifunctional metasurfaces for full-space wave control[J]. Advanced Optical Materials, 2020, 8(8): 1901719. doi: 10.1002/adom.201901719
    [62]
    PAN Weikang, CAI Tong, TANG Shiwei, et al. Trifunctional metasurfaces: Concept and characterizations[J]. Optics Express, 2018, 26(13): 17447–17457. doi: 10.1364/OE.26.017447
    [63]
    LUAN Jing, YANG Sikang, LIU Deming, et al. Polarization and direction-controlled asymmetric multifunctional metadevice for focusing, vortex and Bessel beam generation[J]. Optics Express, 2020, 28(3): 3732–3744. doi: 10.1364/OE.382580
    [64]
    JIN Lei, DONG Zhaogang, MEI Shengtao, et al. Noninterleaved metasurface for (26–1) spin- and wavelength-encoded holograms[J]. Nano Letters, 2018, 18(12): 8016–8024. doi: 10.1021/acs.nanolett.8b04246
    [65]
    WANG Qiu, ZHANG Xueqian, PLUM E, et al. Polarization and frequency multiplexed terahertz meta-holography[J]. Advanced Optical Materials, 2017, 5(14): 1700277. doi: 10.1002/adom.201700277
    [66]
    XU Hexiu, HU Guangwei, JIANG Menghua, et al. Wavevector and frequency multiplexing performed by a spin-decoupled multichannel metasurface[J]. Advanced Materials Technologies, 2020, 5(1): 1900710. doi: 10.1002/admt.201900710
    [67]
    XU Hexiu, WANG Chaohui, WANG Yanzhao, et al. Spin-encoded wavelength-space multitasking Janus metasurfaces[J]. Advanced Optical Materials, 2020, 10.1002/adom.202100190: 2100190. doi: 10.1002/adom.202100190
    [68]
    XU Hexiu, SUN Shulin, TANG Shiwei, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6: 27503. doi: 10.1038/srep27503
    [69]
    XU Hexiu, TANG Shiwei, MA Shaojie, et al. Tunable microwave metasurfaces for high-performance operations: Dispersion compensation and dynamical switch[J]. Scientific Reports, 2016, 6: 38255. doi: 10.1038/srep38255
    [70]
    XU Hexiu, TANG Shiwei, CAI Tong, et al. Multifunctional Metasurfaces: Design Principles and Device Realizations[M]. San Rafael, 2021: 1–184. doi: 10.2200/S01023ED1V01Y 202006MOP005.
    [71]
    崔铁军, 吴浩天, 刘硕. 信息超材料研究进展[J]. 物理学报, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246

    CUI Tiejun, WU Haotian, and LIU Shuo. Research progress of information metamaterials[J]. Acta Physica Sinica, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [72]
    QIAN Chao, ZHENG Bin, SHEN Yichen, et al. Deep-learning-enabled self-adaptive microwave cloak without human intervention[J]. Nature Photonics, 2020, 14(6): 383–390. doi: 10.1038/s41566-020-0604-2
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3734) PDF downloads(455) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint