Xing Xiang-wei, Ji Ke-feng, Kang Li-hong, Zhan Ming. Review of Ship Surveillance Technologies Based on High-Resolution Wide-Swath Synthetic Aperture Radar Imaging[J]. Journal of Radars, 2015, 4(1): 107-121. doi: 10.12000/JR14144
Citation: LIU Zhen, SU Xiaolong, LIU Tianpeng, et al. Matrix differencing method for mixed far-field and near-field source localization[J]. Journal of Radars, 2021, 10(3): 432–442. doi: 10.12000/JR20145

Matrix Differencing Method for Mixed Far-field andNear-field Source Localization

DOI: 10.12000/JR20145
Funds:  The National Natural Science Foundation of China (62022091, 61921001, 61801488, 61701510)
More Information
  • Mixed source localization plays an important role in passive radars. Aiming at the problem of low accuracy via phase difference method under a uniform circular array, this paper proposes a matrix differencing method for mixed far-field and near-field source localization. First, a two-dimensional MUltiple SIgnal Classification (MUSIC) method was utilized to estimate the azimuth and elevation angles of far-field sources. Thereafter, the covariance matrix difference method was exploited to extract the difference matrix of near-field sources. The azimuth and elevation angles of the far-field sources were estimated using the Estimation of Signal Parameters via Rotational Invariance Techniques-like (ESPRIT-like) method. Furthermore, the distance of the near-field sources was obtained by the one-dimensional MUSIC method. Finally, simulations were performed to verify the performance of the proposed algorithm. The proposed algorithm could effectively identify the mixed source when the two-dimensional Direction-Of-Arrival (DOA) of the far-field and near-field sources were the same. Moreover, the proposed algorithm could improve the accuracy of the mixed source parameter estimation. Results show that when the signal-to-noise ratio was set to 20 dB, the 2-D DOA estimation error of the near-field source was approximately 0.01°, and the distance error of the near-field source was approximately 0.1 m.

     

  • [1]
    吴癸周, 郭福成, 张敏. 信号直接定位技术综述[J]. 雷达学报, 2020, 9(6): 998–1013. doi: 10.12000/JR20040

    WU Guizhou, GUO Fucheng, and ZHANG Min. Direct position determination: An overview[J]. Journal of Radars, 2020, 9(6): 998–1013. doi: 10.12000/JR20040
    [2]
    周成伟, 郑航, 顾宇杰, 等. 互质阵列信号处理研究进展: 波达方向估计与自适应波束成形[J]. 雷达学报, 2019, 8(5): 558–577. doi: 10.12000/JR19068

    ZHOU Chengwei, ZHENG Hang, GU Yujie, et al. Research progress on coprime array signal processing: Direction-of-arrival estimation and adaptive beamforming[J]. Journal of Radars, 2019, 8(5): 558–577. doi: 10.12000/JR19068
    [3]
    宋嘉奇, 陶海红. 近场非圆信号参数快速估计算法[J]. 雷达学报, 2020, 9(4): 632–639. doi: 10.12000/JR20053

    SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
    [4]
    ZUO Weiliang, XIN Jingmin, LIU Wenyi, et al. Localization of near-field sources based on linear prediction and oblique projection operator[J]. IEEE Transactions on Signal Processing, 2019, 67(2): 415–430. doi: 10.1109/TSP.2018.2883034
    [5]
    HE Jin, SWAMY M N S, and AHMAD M O. Efficient application of MUSIC algorithm under the coexistence of far-field and near-field sources[J]. IEEE Transactions on Signal Processing, 2012, 60(4): 2066–2070. doi: 10.1109/TSP.2011.2180902
    [6]
    ZUO Weiliang, XIN Jingmin, ZHENG Nanning, et al. Subspace-based localization of far-field and near-field signals without eigendecomposition[J]. IEEE Transactions on Signal Processing, 2018, 66(17): 4461–4476. doi: 10.1109/TSP.2018.2853124
    [7]
    ZHENG Zhi, FU Mingcheng, WANG Wenqin, et al. Localization of mixed near-field and far-field sources using symmetric double-nested arrays[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(11): 7059–7070. doi: 10.1109/TAP.2019.2925199
    [8]
    LIU Guohong and SUN Xiaoying. Spatial differencing method for mixed far-field and near-field sources localization[J]. IEEE Signal Processing Letters, 2014, 21(11): 1331–1335. doi: 10.1109/LSP.2014.2326173
    [9]
    XIE Jian, TAO Haihong, RAO Xuan, et al. Localization of mixed far-field and near-field sources under unknown mutual coupling[J]. Digital Signal Processing, 2016, 50: 229–239. doi: 10.1016/j.dsp.2015.10.012
    [10]
    WANG Kai, WANG Ling, SHANG Jingrui, et al. Mixed near-field and far-field source localization based on uniform linear array partition[J]. IEEE Sensors Journal, 2016, 16(22): 8083–8090. doi: 10.1109/JSEN.2016.2603182
    [11]
    WU Yuntao, WANG Hai, ZHANG Yanbin, et al. Multiple near-field source localisation with uniform circular array[J]. Electronics Letters, 2013, 49(24): 1509–1510. doi: 10.1049/el.2013.2012
    [12]
    JUNG T J and LEE K. Closed-Form algorithm for 3-D single-source localization with uniform circular array[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 1096–1099. doi: 10.1109/LAWP.2014.2327992
    [13]
    CHEN Xin, LIU Zhen, and WEI Xizhang. Unambiguous parameter estimation of multiple near-field sources via rotating uniform circular array[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 16: 872–875. doi: 10.1109/LAWP.2016.2613084
    [14]
    陈鑫, 刘振, 魏玺章. 基于旋转均匀圆阵的单近场源参数估计解模糊算法[J]. 电子学报, 2017, 45(3): 584–590. doi: 10.3969/j.issn.0372-2112.2017.03.012

    CHEN Xin, LIU Zhen, and WEI Xizhang. Ambiguity resolving in parameter estimation of a single near-field source via rotating uniform circular array[J]. Acta Electronica Sinica, 2017, 45(3): 584–590. doi: 10.3969/j.issn.0372-2112.2017.03.012
    [15]
    SU Xiaolong, LIU Zhen, LIU Tianpeng, et al. An SOS-based algorithm for localization of multiple near-field sources using uniform circular array[J]. IEEE Sensors Letters, 2019, 3(11): 5501004. doi: 10.1109/LSENS.2019.2950196
    [16]
    XUE Bing, FANG Guangyou, and JI Yicai. Passive localisation of mixed far-field and near-field sources using uniform circular array[J]. Electronics Letters, 2016, 52(20): 1690–1692. doi: 10.1049/el.2016.2091
    [17]
    SU Xiaolong, LIU Zhen, CHEN Xin, et al. Mixed incoherent far-field and near-field source localization under uniform circular array[J]. Sensors, 2018, 18(5): 1432. doi: 10.3390/s18051432
  • Relative Articles

    [1]WANG Zhirui, KANG Yuzhuo, ZENG Xuan, WANG Yuelei, ZHANG Ting, SUN Xian. SAR-AIRcraft-1.0: High-resolution SAR Aircraft Detection and Recognition Dataset(in English)[J]. Journal of Radars, 2023, 12(4): 906-922. doi: 10.12000/JR23043
    [2]ZHANG Fan, LU Shengtao, XIANG Deliang, YUAN Xinzhe. An Improved Superpixel-based CFAR Method for High-resolution SAR Image Ship Target Detection[J]. Journal of Radars, 2023, 12(1): 120-139. doi: 10.12000/JR22067
    [3]GAO Zhiqi, SUN Shuchen, HUANG Pingping, QI Yaolong, XU Wei. Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm[J]. Journal of Radars, 2023, 12(5): 1044-1055. doi: 10.12000/JR22243
    [4]BI Hui, JIN Shuang, WANG Xiao, LI Yong, HAN Bing, HONG Wen. High-resolution High-dimensional Imaging of Urban Building Based on GaoFen-3 SAR Data(in English)[J]. Journal of Radars, 2022, 11(1): 40-51. doi: 10.12000/JR21113
    [5]LEI Yu, LENG Xiangguang, SUN Zhongzhen, JI Kefeng. Construction and Recognition Performance Analysis of Wide-swath SAR Maritime Large Moving Ships Dataset[J]. Journal of Radars, 2022, 11(3): 347-362. doi: 10.12000/JR21173
    [6]SUN Xian, WANG Zhirui, SUN Yuanrui, DIAO Wenhui, ZHANG Yue, FU Kun. AIR-SARShip-1.0: High-resolution SAR Ship Detection Dataset (in English)[J]. Journal of Radars, 2019, 8(6): 852-863. doi: 10.12000/JR19097
    [7]WANG Chao, WANG Yanfei, LIU Chang, LIU Bidan. A New Approach to Range Cell Migration Correction for Ground Moving Targets in High-resolution SAR System Based on Parameter Estimation[J]. Journal of Radars, 2019, 8(1): 64-72. doi: 10.12000/JR18054
    [8]Sun Xiang, Song Hongjun, Wang Robert, Li Ning. POA Correction Method Using High-resolution Full-polarization SAR Image[J]. Journal of Radars, 2018, 7(4): 465-474. doi: 10.12000/JR18026
    [9]Dou Fangzheng, Diao Wenhui, Sun Xian, Zhang Yue, Fu Kun. Aircraft Reconstruction in High Resolution SAR Images Using Deep Shape Prior[J]. Journal of Radars, 2017, 6(5): 503-513. doi: 10.12000/JR17047
    [10]Tang Jiangwen, Deng Yunkai, Wang Robert, Zhao Shuo, Li Ning. High-resolution Slide Spotlight SAR Imaging by BP Algorithm and Heterogeneous Parallel Implementation[J]. Journal of Radars, 2017, 6(4): 368-375. doi: 10.12000/JR16053
    [11]Wen Xuejiao, Qiu Xiaolan, You Hongjian, Lu Xiaojun. Focusing and Parameter Estimation of Fluctuating Targets in High Resolution Spaceborne SAR[J]. Journal of Radars, 2017, 6(2): 213-220. doi: 10.12000/JR17005
    [12]Liao Ming-sheng, Wei Lian-huan, Wang Zi-yun, Timo Balz, Zhang Lu. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios[J]. Journal of Radars, 2015, 4(2): 123-129. doi: 10.12000/JR15031
    [13]Zhang Yue-ting, Qiu Xiao-lan, Ding Chi-biao, Lei Bin, Fu Kun. The Simulation and Characteristics Analysis on High Resolution SAR Images of Bridges[J]. Journal of Radars, 2015, 4(1): 78-83. doi: 10.12000/JR14139
    [14]Yang Xiang-li, Xu De-wei, Huang Ping-ping, Yang Wen. Change Detection of High Resolution SAR Images by the Fusion of Coherent/Incoherent Information[J]. Journal of Radars, 2015, 4(5): 582-590. doi: 10.12000/JR15073
    [15]Xu Cheng-bin, Zhou Wei, Cong Yu, Guan Jian. Ship Analysis and Detection in High-resolution Pol-SAR Imagery Based on Peak Zone[J]. Journal of Radars, 2015, 4(3): 367-373. doi: 10.12000/JR14093
    [16]Luo Xiu-lian, Xu Wei, Guo Lei. The Application of PRF Variation to Squint Spotlight SAR[J]. Journal of Radars, 2015, 4(1): 70-77. doi: 10.12000/JR14149
    [17]Xing Meng-dao, Sun Guang-cai, Li Xue-shi. Study on SAR/GMTI Processing for High-resolution Wide-swath SAR System[J]. Journal of Radars, 2015, 4(4): 375-385. doi: 10.12000/JR15096
    [18]Jia Ying-xin, Wang Yan-fei. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System[J]. Journal of Radars, 2013, 2(1): 77-85. doi: 10.3724/SP.J.1300.2012.20100
    [19]Cheng Jiang-hua, Gao Gui, Ku Xi-shu, Sun Ji-xiang. A Novel Method for Detecting and Identifying Road Junctions from High Resolution SAR Images[J]. Journal of Radars, 2012, 1(1): 100-108. doi: 10.3724/SP.J.1300.2012.20024
    [20]Li Ning, Wang Ling, Zhang Gong. High-resolution Side-view and Top-view Imaging Method of Ship Targets Using Multistatic ISAR[J]. Journal of Radars, 2012, 1(2): 163-170. doi: 10.3724/SP.J.1300.2012.20021
  • Cited by

    Periodical cited type(3)

    1. 熊安亚,王芹,徐是. 基于虚拟现实的人机交互视觉目标感知仿真. 计算机仿真. 2024(02): 237-240+419 .
    2. 华煜明,王东亚,朱天林,金胜,王洋. 复合微多普勒信号的时频谐波分析方法. 系统工程与电子技术. 2024(07): 2301-2309 .
    3. 冯维婷,梁青. 闪烁现象下基于微动补偿的旋转叶片参数估计方法. 信号处理. 2022(12): 2617-2627 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.3 %FULLTEXT: 32.3 %META: 62.2 %META: 62.2 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %其他: 0.9 %其他: 0.9 %Boydton: 0.0 %Boydton: 0.0 %Central District: 0.0 %Central District: 0.0 %China: 0.8 %China: 0.8 %Clarks Summit: 0.0 %Clarks Summit: 0.0 %France: 0.1 %France: 0.1 %Hanoi: 0.1 %Hanoi: 0.1 %India: 0.0 %India: 0.0 %Japan: 0.1 %Japan: 0.1 %North Point: 0.0 %North Point: 0.0 %Poland: 0.0 %Poland: 0.0 %San Jose: 0.0 %San Jose: 0.0 %Seattle: 0.0 %Seattle: 0.0 %Sri Lanka: 0.1 %Sri Lanka: 0.1 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Toyosu: 0.0 %Toyosu: 0.0 %United States: 0.2 %United States: 0.2 %XX: 0.0 %XX: 0.0 %[]: 0.7 %[]: 0.7 %上海: 0.8 %上海: 0.8 %东京: 0.0 %东京: 0.0 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %临汾: 0.0 %临汾: 0.0 %临沂: 0.0 %临沂: 0.0 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %亚特兰大: 0.0 %亚特兰大: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %六安: 0.0 %六安: 0.0 %兰州: 0.1 %兰州: 0.1 %兰河畔林堡: 0.1 %兰河畔林堡: 0.1 %兰辛: 0.0 %兰辛: 0.0 %内蒙古自治区呼和浩特: 0.0 %内蒙古自治区呼和浩特: 0.0 %列克星敦: 0.1 %列克星敦: 0.1 %包头: 0.0 %包头: 0.0 %北京: 16.3 %北京: 16.3 %北京市: 0.4 %北京市: 0.4 %十堰: 0.0 %十堰: 0.0 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 1.7 %南京: 1.7 %南京市: 0.0 %南京市: 0.0 %南昌: 0.2 %南昌: 0.2 %南通: 0.0 %南通: 0.0 %南阳: 0.0 %南阳: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.0 %台州: 0.0 %合肥: 0.5 %合肥: 0.5 %吉林: 0.0 %吉林: 0.0 %周口: 0.0 %周口: 0.0 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.0 %哥伦布: 0.0 %唐山: 0.0 %唐山: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %圣何塞: 0.1 %圣何塞: 0.1 %大庆: 0.0 %大庆: 0.0 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %天津市: 0.0 %天津市: 0.0 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.0 %安康: 0.0 %宣城: 0.1 %宣城: 0.1 %巴基斯坦: 0.1 %巴基斯坦: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.8 %广州: 0.8 %广西壮族自治区桂林: 0.0 %广西壮族自治区桂林: 0.0 %庆阳: 0.0 %庆阳: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.0 %张家口市: 0.0 %张家界: 0.0 %张家界: 0.0 %徐州: 0.0 %徐州: 0.0 %成都: 0.9 %成都: 0.9 %成都市: 0.0 %成都市: 0.0 %成都市双流区: 0.0 %成都市双流区: 0.0 %扬州: 0.1 %扬州: 0.1 %抚州: 0.0 %抚州: 0.0 %拉萨: 0.0 %拉萨: 0.0 %无锡: 0.2 %无锡: 0.2 %旧金山: 0.0 %旧金山: 0.0 %昆明: 0.4 %昆明: 0.4 %晋城: 0.0 %晋城: 0.0 %景德镇: 0.0 %景德镇: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.7 %杭州: 0.7 %杭州市: 0.0 %杭州市: 0.0 %桂林: 0.2 %桂林: 0.2 %武汉: 0.4 %武汉: 0.4 %汉中: 0.0 %汉中: 0.0 %沈阳: 0.2 %沈阳: 0.2 %河内: 0.0 %河内: 0.0 %波德: 0.0 %波德: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.4 %济南: 0.4 %淄博: 0.0 %淄博: 0.0 %淮南: 0.1 %淮南: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.0 %温州: 0.0 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %湘潭市雨湖区: 0.0 %湘潭市雨湖区: 0.0 %滁州: 0.0 %滁州: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.1 %漳州: 0.1 %烟台: 0.0 %烟台: 0.0 %玉林: 0.0 %玉林: 0.0 %珠海: 0.0 %珠海: 0.0 %百色: 0.0 %百色: 0.0 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.7 %石家庄: 0.7 %石家庄市: 0.2 %石家庄市: 0.2 %绍兴: 0.0 %绍兴: 0.0 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国加利福尼亚旧金山: 0.1 %美国加利福尼亚旧金山: 0.1 %聊城市: 0.0 %聊城市: 0.0 %芒廷维尤: 19.3 %芒廷维尤: 19.3 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %英国: 0.0 %英国: 0.0 %茂名: 0.0 %茂名: 0.0 %荆州: 0.0 %荆州: 0.0 %菏泽: 0.0 %菏泽: 0.0 %萨尔斯堡: 0.1 %萨尔斯堡: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡水: 0.1 %衡水: 0.1 %衢州: 0.0 %衢州: 0.0 %西宁: 36.3 %西宁: 36.3 %西安: 1.6 %西安: 1.6 %西安市: 0.0 %西安市: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %越南庆和: 0.0 %越南庆和: 0.0 %运城: 0.4 %运城: 0.4 %通化: 0.0 %通化: 0.0 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.4 %郑州: 0.4 %郑州市: 0.0 %郑州市: 0.0 %重庆: 0.2 %重庆: 0.2 %重庆市: 0.0 %重庆市: 0.0 %银川: 0.0 %银川: 0.0 %锦州: 0.0 %锦州: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 0.9 %长沙: 0.9 %长沙市: 0.0 %长沙市: 0.0 %长沙市岳麓区: 0.0 %长沙市岳麓区: 0.0 %长治: 0.1 %长治: 0.1 %阜阳: 0.0 %阜阳: 0.0 %阳江: 0.0 %阳江: 0.0 %阳泉: 0.1 %阳泉: 0.1 %随州: 0.0 %随州: 0.0 %青岛: 0.1 %青岛: 0.1 %鞍山: 0.0 %鞍山: 0.0 %首尔: 0.1 %首尔: 0.1 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马德里自治区: 0.0 %马德里自治区: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他其他BoydtonCentral DistrictChinaClarks SummitFranceHanoiIndiaJapanNorth PointPolandSan JoseSeattleSri LankaTaiwan, ChinaToyosuUnited StatesXX[]上海东京东莞中卫临汾临沂丹东丽水亚特兰大佛山保定六安兰州兰河畔林堡兰辛内蒙古自治区呼和浩特列克星敦包头北京北京市十堰华盛顿州南京南京市南昌南通南阳台北台州合肥吉林周口呼和浩特哈尔滨哥伦布唐山嘉兴圣何塞大庆大连天津天津市太原威海宁波安康宣城巴基斯坦巴彦淖尔常州平顶山广州广西壮族自治区桂林庆阳开封张家口张家口市张家界徐州成都成都市成都市双流区扬州抚州拉萨无锡旧金山昆明晋城景德镇朝阳杭州杭州市桂林武汉汉中沈阳河内波德洛阳济南淄博淮南深圳温州渭南湖州湘潭湘潭市雨湖区滁州漯河漳州烟台玉林珠海百色盐城石家庄石家庄市绍兴美国伊利诺斯芝加哥美国加利福尼亚旧金山聊城市芒廷维尤芝加哥苏州英国茂名荆州菏泽萨尔斯堡葫芦岛衡水衢州西宁西安西安市诺沃克贵港贵阳越南庆和运城通化邢台邯郸郑州郑州市重庆重庆市银川锦州长春长沙长沙市长沙市岳麓区长治阜阳阳江阳泉随州青岛鞍山首尔香港香港特别行政区马德里自治区马鞍山齐齐哈尔龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2609) PDF downloads(180) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint