Volume 11 Issue 3
Jun.  2022
Turn off MathJax
Article Contents
LEI Yu, LENG Xiangguang, SUN Zhongzhen, et al. Construction and recognition performance analysis of wide-swath SAR maritime large moving ships dataset[J]. Journal of Radars, 2022, 11(3): 347–362. doi: 10.12000/JR21173
Citation: LEI Yu, LENG Xiangguang, SUN Zhongzhen, et al. Construction and recognition performance analysis of wide-swath SAR maritime large moving ships dataset[J]. Journal of Radars, 2022, 11(3): 347–362. doi: 10.12000/JR21173

Construction and Recognition Performance Analysis of Wide-swath SAR Maritime Large Moving Ships Dataset

DOI: 10.12000/JR21173
Funds:  The National Natural Science Foundation of China (62001480), Hunan Provincial Natural Science Foundation of China (2021JJ40684)
More Information
  • Corresponding author: LENG Xiangguang, luckight@163.com; JI Kefeng, jikefeng@nudt.edu.cn
  • Received Date: 2021-11-09
  • Accepted Date: 2022-03-09
  • Rev Recd Date: 2022-03-06
  • Available Online: 2022-03-16
  • Publish Date: 2022-03-31
  • Wide-swath Synthetic Aperture Radar (SAR), represented by TopSAR and ScanSAR acquisition modes, can observe a vast area of ocean scenes. However, achieving wide-swath reduces the quality of imaging resolution, which causes the ships captured in wide-swath SAR images to not have clear structural characteristics. This phenomenon brings a great challenge to the identification of large maritime ships. Further, the lack of wide-swath SAR sample data of large critical ships, such as moving aircraft carriers and amphibious ships, makes the identification of maritime moving ships difficult. To solve this problem, we construct a wide-swath SAR large maritime moving ships dataset, which includes 2291 samples. The dataset is divided into the following categories: large military ships, large civilian ships of lengths greater than 250 m, and large civilian ships of lengths between 150~250 m. The construction process of the dataset is as follows: first, the sample data of large military ships in the port area are obtained from prior knowledge; second, the sample data of large civilian ships are obtained via the length screening of OpenSARShip dataset with attribute information; finally, the imaging results of moving ships at sea are simulated by adding quadratic phase error in a range-Doppler domain. This study also analyzes the recognition performance of the constructed dataset and motion simulation of the processed data using classical recognition algorithms and deep learning methods. Experimental results show that using SAR image complex information at low resolution can improve the recognition rate of the algorithm to a certain extent, and the defocusing problem of the moving ship target has a considerable impact on the recognition accuracy.

     

  • loading
  • [1]
    邢相薇, 计科峰, 康利鸿, 等. HRWS SAR 图像舰船目标监视技术研究综述[J]. 雷达学报, 2015, 4(1): 107–121. doi: 10.12000/JR14144

    XING Xiangwei, JI Kefeng, KANG Lihong, et al. Review of ship surveillance technologies based on high-resolution wide-swath synthetic aperture radar imaging[J]. Journal of Radars, 2015, 4(1): 107–121. doi: 10.12000/JR14144
    [2]
    李健. 星载宽幅 SAR及目标检测算法研究[D]. [博士论文], 西安电子科技大学, 2018: 15–21.

    LI Jian. Study on spaceborne SAR with wide swath and target detection[D]. [Ph. D. dissertation], Xidian University, 2018: 15–21.
    [3]
    RANEY R K, LUSCOMBE A P, LANGHAM E J, et al. RADARSAT (SAR imaging)[J]. Proceedings of the IEEE, 1991, 79(6): 839–849. doi: 10.1109/5.90162
    [4]
    匡燕, 李安, 李子扬, 等. RADARSAT卫星产品[J]. 遥感信息, 2007(2): 82–85, 27. doi: 10.3969/j.issn.1000-3177.2007.02.019

    KUANG Yan, LI An, LI Ziyang, et al. RADARSAT satellite overview[J]. Remote Sensing Information, 2007(2): 82–85, 27. doi: 10.3969/j.issn.1000-3177.2007.02.019
    [5]
    张庆君. 高分三号卫星总体设计与关键技术[J]. 测绘学报, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049

    ZHANG Qingjun. System design and key technologies of the GF-3 satellite[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(3): 269–277. doi: 10.11947/j.AGCS.2017.20170049
    [6]
    SUN Zhongzhen, DAI Muchen, LENG Xiangguang, et al. An anchor-free detection method for ship targets in high-resolution SAR images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 7799–7816. doi: 10.1109/JSTARS.2021.3099483
    [7]
    KANKAKU Y, SUZUKI S, and OSAWA Y. ALOS-2 mission and development status[C]. 2013 IEEE International Geoscience and Remote Sensing Symposium-IGARSS, Melbourne, Australia, 2013: 2396–2399.
    [8]
    VAN WIMERSMA GREIDANUS H and SANTAMARIA S C. First analyses of Sentinel-1 images for maritime surveillance[R]. JRC92666, 2014.
    [9]
    SANTAMARIA C, ALVAREZ M, GREIDANUS H, et al. Mass processing of Sentinel-1 images for maritime surveillance[J]. Remote Sensing, 2017, 9(7): 678. doi: 10.3390/rs9070678
    [10]
    GEUDTNER D, TORRES R, SNOEIJ P, et al. Sentinel-1 system capabilities and applications[C]. 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014: 1457–1460.
    [11]
    王玉莹, 张志敏, 李宁, 等. 高分宽幅SAR系统下的方位多通道运动目标成像算法研究[J]. 电子与信息学报, 2020, 42(3): 541–546. doi: 10.11999/JEIT190211

    WANG Yuying, ZHANG Zhimin, LI Ning, et al. A moving target imaging approach for the multichannel in azimuth high resolution wide swath SAR system[J]. Journal of Electronics &Information Technology, 2020, 42(3): 541–546. doi: 10.11999/JEIT190211
    [12]
    潘洁, 王帅, 李道京, 等. 基于分布式压缩感知的高分宽幅SAR动目标成像技术[J]. 雷达学报, 2020, 9(1): 166–173. doi: 10.12000/JR19060

    PAN Jie, WANG Shuai, LI Daojing, et al. High-resolution wide-swath SAR moving target imaging technology based on distributed compressed sensing[J]. Journal of Radars, 2020, 9(1): 166–173. doi: 10.12000/JR19060
    [13]
    邓云凯, 禹卫东, 张衡, 等. 未来星载SAR技术发展趋势[J]. 雷达学报, 2020, 9(1): 1–33. doi: 10.12000/JR20008

    DENG Yunkai, YU Weidong, ZHANG Heng, et al. Forthcoming spaceborne SAR development[J]. Journal of Radars, 2020, 9(1): 1–33. doi: 10.12000/JR20008
    [14]
    LI Jianwei, QU Changwen, and SHAO Jiaqi. Ship detection in SAR images based on an improved faster R-CNN[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017: 1–6.
    [15]
    WANG Yuanyuan, WANG Chao, ZHANG Hong, et al. A SAR dataset of ship detection for deep learning under complex backgrounds[J]. Remote Sensing, 2019, 11(7): 765. doi: 10.3390/rs11070765
    [16]
    孙显, 王智睿, 孙元睿, 等. AIR-SARShip-1.0: 高分辨率SAR舰船检测数据集[J]. 雷达学报, 2019, 8(6): 852–862. doi: 10.12000/JR19097

    SUN Xian, WANG Zhirui, SUN Yuanrui, et al. AIR-SARShip-1.0: High-resolution SAR ship detection dataset[J]. Journal of Radars, 2019, 8(6): 852–862. doi: 10.12000/JR19097
    [17]
    包萌, 张杰, 孟俊敏, 等. 高分辨率SAR船只样本集构建与特征分析[J]. 电波科学学报, 2019, 34(6): 789–797. doi: 10.13443/j.cjors.2019043008

    BAO Meng, ZHANG Jie, MENG Junmin, et al. Construction and feature analysis of high resolution SAR ship sample set[J]. Chinese Journal of Radio Science, 2019, 34(6): 789–797. doi: 10.13443/j.cjors.2019043008
    [18]
    HOU Xiyue, AO Wei, SONG Qian, et al. FUSAR-ship: Building a high-resolution SAR-AIS matchup dataset of Gaofen-3 for ship detection and recognition[J]. Science China Information Sciences, 2020, 63(4): 140303. doi: 10.1007/s11432-019-2772-5
    [19]
    HUANG Lanqing, LIU Bin, LI Boying, et al. OpenSARShip: A dataset dedicated to Sentinel-1 ship interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 195–208. doi: 10.1109/JSTARS.2017.2755672
    [20]
    LI Boying, LIU Bin, HUANG Lanqing, et al. OpenSARShip 2.0: A large-volume dataset for deeper interpretation of ship targets in Sentinel-1 imagery[C]. 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), Beijing, China, 2017: 1–5.
    [21]
    ZÜHLKE M, FOMFERRA N, BROCKMANN C, et al. SNAP (sentinel application platform) and the ESA sentinel 3 toolbox[C]. Proceedings of Sentinel-3 for Science Workshop, Venice, Italy, 2015: 21.
    [22]
    LENG Xiangguang, JI Kefeng, ZHOU Shilin, et al. Fast shape parameter estimation of the complex generalized Gaussian distribution in SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2020, 17(11): 1933–1937. doi: 10.1109/LGRS.2019.2960095
    [23]
    张绪锦, 朱兆达, 邓海涛, 等. 一种适用于双通道星载SAR的动目标检测技术[J]. 电子学报, 2007, 35(9): 1794–1798. doi: 10.3321/j.issn:0372-2112.2007.09.037

    ZHANG Xujin, ZHU Zhaoda, DENG Haitao, et al. A moving target detection method for dual-aperture spaceborne SAR[J]. Acta Electronica Sinica, 2007, 35(9): 1794–1798. doi: 10.3321/j.issn:0372-2112.2007.09.037
    [24]
    闫贺, 王珏, 黄佳, 等. 基于二维速度搜索的星载SAR运动目标聚焦算法研究[J]. 电子与信息学报, 2019, 41(6): 1287–1293. doi: 10.11999/JEIT180663

    YAN He, WANG Jue, HUANG Jia, et al. A moving-targets detection algorithm for spaceborne SAR system based on two-dimensional velocity search method[J]. Journal of Electronics &Information Technology, 2019, 41(6): 1287–1293. doi: 10.11999/JEIT180663
    [25]
    张道成, 张正成. 运动目标对SAR成像的影响[J]. 舰船电子对抗, 2014, 37(1): 49–52, 67. doi: 10.3969/j.issn.1673-9167.2014.01.012

    ZHANG Daocheng and ZHANG Zhengcheng. Influence of moving targets on SAR imaging[J]. Shipboard Electronic Countermeasure, 2014, 37(1): 49–52, 67. doi: 10.3969/j.issn.1673-9167.2014.01.012
    [26]
    马琳, 潘宗序, 黄钟泠, 等. 基于子孔径与全孔径特征学习的SAR多通道虚假目标鉴别[J]. 雷达学报, 2021, 10(1): 159–172. doi: 10.12000/JR20106

    MA Lin, PAN Zongxu, HUANG Zhongling, et al. Multichannel false-target discrimination in SAR images based on sub-aperture and full-aperture feature learning[J]. Journal of Radars, 2021, 10(1): 159–172. doi: 10.12000/JR20106
    [27]
    温雪娇, 仇晓兰, 尤红建, 等. 高分辨率星载SAR起伏运动目标精细聚焦与参数估计方法[J]. 雷达学报, 2017, 6(2): 213–220. doi: 10.12000/JR17005

    WEN Xuejiao, QIU Xiaolan, YOU Hongjian, et al. Focusing and parameter estimation of fluctuating targets in high resolution spaceborne SAR[J]. Journal of Radars, 2017, 6(2): 213–220. doi: 10.12000/JR17005
    [28]
    HARTIGAN J A and WONG M A. Algorithm AS 136: A k-means clustering algorithm[J]. Journal of the Royal Statistical Society. Series c (Applied Statistics) , 1979, 28(1): 100–108. doi: 10.2307/2346830
    [29]
    THORNDIKE R L. Who belongs in the family?[J]. Psychometrika, 1953, 18(4): 267–276. doi: 10.1007/bf02289263
    [30]
    BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121–167. doi: 10.1023/A:1009715923555
    [31]
    SMOLA A J and SCHÖLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3): 199–222. doi: 10.1023/B:STCO.0000035301.49549.88
    [32]
    SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2014.
    [33]
    SZEGEDY C, LIU Wei, JIA Yangqing, et al. Going deeper with convolutions[C]. The 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, USA, 2015: 1–9.
    [34]
    HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. The 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778.
    [35]
    雷禹, 冷祥光, 周晓艳, 等. 基于改进Res Net网络的复数SAR图像舰船目标识别方法[J/OL]. 系统工程与电子技术: 1–11. http://kns.cnki.net/kcms/detail/11.2422.TN.20220225.0948.018.html, 2022.

    LEI Yu, LENG Xiangguang, ZHOU Xiaoyan, et al. Recognition method of ship target in complex SAR image based on improved Res Net network[J/OL]. Systems Engineering and Electronics: 1–11. http://kns.cnki.net/kcms/detail/11.2422.TN.20220225.0948.018.html, 2022.
    [36]
    VAN DER MAATEN L and HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579–2605.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3173) PDF downloads(313) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint