| Citation: | GAO Zhiqi, SUN Shuchen, HUANG Pingping, et al. Improved L1/2 threshold iterative high resolution SAR imaging algorithm[J]. Journal of Radars, 2023, 12(5): 1044–1055. doi: 10.12000/JR22243 | 
	                | [1] | 
					 GLENTIS G, ZHAO Kexin, JAKOBSSON A, et al. Non-parametric high-resolution SAR imaging[J]. IEEE Transactions on Signal Processing, 2013, 61(7): 1614–1624. doi:  10.1109/TSP.2012.2232662 
						
					 | 
			
| [2] | 
					 DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306. doi:  10.1109/TIT.2006.871582 
						
					 | 
			
| [3] | 
					 李清泉, 王欢. 基于稀疏表示理论的优化算法综述[J]. 测绘地理信息, 2019, 44(4): 1–9. doi:  10.14188/j.2095-6045.2019015 
					LI Qingquan and WANG Huan. Sparse representation based optimization: A survey[J]. Journal of Geomatics, 2019, 44(4): 1–9. doi:  10.14188/j.2095-6045.2019015 
						
					 | 
			
| [4] | 
					 NI Jiacheng, ZHANG Qun, LUO Ying, et al. Compressed sensing SAR imaging based on centralized sparse representation[J]. IEEE Sensors Journal, 2018, 18(12): 4920–4932. doi:  10.1109/JSEN.2018.2831921 
						
					 | 
			
| [5] | 
					 JUNG D H, KIM H S, KIM C K, et al. Sparse scene recovery for high-resolution automobile FMCW SAR via scaled compressed sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(12): 10136–10146. doi:  10.1109/TGRS.2019.2931626 
						
					 | 
			
| [6] | 
					 王天云, 刘冰, 魏强, 等. 压缩感知成像雷达研究进展[J]. 电光与控制, 2019, 26(7): 1–8. doi:  10.3969/j.issn.1671-637X.2019.07.001 
					WANG Tianyun, LIU Bing, WEI Qiang, et al. A review on research progresses of compressed sensing imaging radar[J]. Electronics Optics &Control, 2019, 26(7): 1–8. doi:  10.3969/j.issn.1671-637X.2019.07.001 
						
					 | 
			
| [7] | 
					 JIANG Hai, JIANG Chenglong, ZHANG Bingchen, et al. Experimental results of spaceborne stripmap SAR raw data imaging via compressed sensing[C]. 2011 IEEE CIE International Conference on Radar, Chengdu, China, 2011: 202–205. 
						
					 | 
			
| [8] | 
					 ALONSO M T, LOPEZ-DEKKER M, and MALLORQUI J J. A novel strategy for radar imaging based on compressive sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(12): 4285–4295. doi:  10.1109/TGRS.2010.2051231 
						
					 | 
			
| [9] | 
					 ZENG Jinshan, FANG Jian, and XU Zongben. Sparse SAR imaging based on L1/2 regularization[J]. Science China Information Sciences, 2012, 55(8): 1755–1775. doi:  10.1007/s11432-012-4632-5 
						
					 | 
			
| [10] | 
					 史洪印, 贾宝京, 齐兆龙. 基于压缩感知的非均匀脉冲SAR欺骗性干扰抑制方法[J]. 仪器仪表学报, 2016, 37(3): 525–532. doi:  10.3969/j.issn.0254-3087.2016.03.007 
					SHI Hongyin, JIA Baojing, and QI Zhaolong. Novel non-uniform pulse SAR deception jamming suppressing method based on compressive sensing[J]. Chinese Journal of Scientific Instrument, 2016, 37(3): 525–532. doi:  10.3969/j.issn.0254-3087.2016.03.007 
						
					 | 
			
| [11] | 
					 段化军, 朱岱寅, 李勇, 等. 基于压缩感知的条带SAR缺失数据恢复成像方法[J]. 系统工程与电子技术, 2016, 38(5): 1025–1031. doi:  10.3969/j.issn.1001-506X.2016.05.09 
					DUAN Huajun, ZHU Daiyin, LI Yong, et al. Recovery and imaging method for missing data of the strip-map SAR based on compressive sensing[J]. Systems Engineering and Electronics, 2016, 38(5): 1025–1031. doi:  10.3969/j.issn.1001-506X.2016.05.09 
						
					 | 
			
| [12] | 
					 李博, 刘发林, 周崇彬, 等. 基于近似观测的加权L1压缩感知SAR成像[J]. 微波学报, 2018, 34(6): 62–67. doi:  10.14183/j.cnki.1005-6122.201806014 
					LI Bo, LIU Falin, ZHOU Chongbin, et al. Approximated observation-based weighted L1 compressed sensing SAR imaging[J]. Journal of Microwaves, 2018, 34(6): 62–67. doi:  10.14183/j.cnki.1005-6122.201806014 
						
					 | 
			
| [13] | 
					 徐宗本, 吴一戎, 张冰尘, 等. 基于L1/2正则化理论的稀疏雷达成像[J]. 科学通报, 2018, 63(14): 1306–1319. doi:  10.1360/N972018-00372 
					XU Zongben, WU Yirong, ZHANG Bingchen, et al. Sparse radar imaging based on L1/2 regularization theory[J]. Chinese Science Bulletin, 2018, 63(14): 1306–1319. doi:  10.1360/N972018-00372 
						
					 | 
			
| [14] | 
					 杨卫星, 朱岱寅. 稀疏场景下SAR方位向随机丢失数据的迭代成像算法[J]. 系统工程与电子技术, 2021, 43(7): 1748–1755. doi:  10.12305/j.issn.1001-506X.2021.07.03 
					YANG Weixing and ZHU Daiyin. Iterative imaging algorithm for SAR azimuth random missing data with sparse scenes[J]. Systems Engineering and Electronics, 2021, 43(7): 1748–1755. doi:  10.12305/j.issn.1001-506X.2021.07.03 
						
					 | 
			
| [15] | 
					 ZHANG Jian and GHANEM B. ISTA-net: Interpretable optimization-inspired deep network for image compressive sensing[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 1828–1837. 
						
					 | 
			
| [16] | 
					 赵克祥, 毕辉, 张冰尘. 基于快速阈值迭代的SAR层析成像处理方法[J]. 系统工程与电子技术, 2017, 39(5): 1019–1023. doi:  10.3969/j.issn.1001-506X.2017.05.11 
					ZHAO Kexiang, BI Hui, and ZHANG Bingchen. SAR tomography method based on fast threshold iteration iterative shrinkage-thresholding[J]. Systems Engineering and Electronics, 2017, 39(5): 1019–1023. doi:  10.3969/j.issn.1001-506X.2017.05.11 
						
					 | 
			
| [17] | 
					 BI Hui and BI Guoan. Performance analysis of iterative soft thresholding algorithm for L1 regularization based sparse SAR imaging[C]. 2019 IEEE Radar Conference, Boston, USA, 2019: 1–6. 
						
					 | 
			
| [18] | 
					 XU Zhongming, WANG Qinghua, HE Yansong, et al. A monotonic two-step iterative shrinkage/thresholding algorithm for sound source identification based on equivalent source method[J]. Applied Acoustics, 2018, 129: 386–396. doi:  10.1016/j.apacoust.2017.07.012 
						
					 | 
			
| [19] | 
					 NESTEROV Y E. A method for solving the convex programming problem with convergence rate O (1/k2)[J]. Doklady Akademii Nauk SSSR, 1983, 269(3): 543–547. 
						
					 | 
			
| [20] | 
					 BECK A and TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences, 2009, 2(1): 183–202. doi:  10.1137/080716542 
						
					 | 
			
| [21] | 
					 张倩, 李海洋. 一种改进的迭代软阈值算法及其应用[J]. 纺织高校基础科学学报, 2018, 31(2): 253–260. doi:  10.13338/j.issn.1006-8341.2018.02.020 
					ZHANG Qian and LI Haiyang. An improved iterative soft thresholding algorithm and application[J]. Basic Sciences Journal of Textile Universities, 2018, 31(2): 253–260. doi:  10.13338/j.issn.1006-8341.2018.02.020 
						
					 | 
			
| [22] | 
					 XU Zongben. Data modeling: Visual psychology approach and L1/2 regularization theory[C]. International Congress of Mathematicians 2010 (ICM 2010), Hyderabad, India, 2010: 3151–3184. 
						
					 | 
			
| [23] | 
					 XU Zongben, GUO Hailiang, WANG Yao, et al. Representative of L1/2 regularization among Lq ( 0<q≤ 1) regularizations: An experimental study based on phase diagram[J]. Acta Automatica Sinica, 2012, 38(7): 1225–1228. doi:  10.1016/S1874-1029(11)60293-0 
						
					 | 
			
| [24] | 
					 XU Zongben, CHANG Xiangyu, XU Fengmin, et al. L1/2 regularization: A thresholding representation theory and a fast solver[J]. IEEE Transactions on Neural Networks and Learning Systems, 2012, 23(7): 1013–1027. doi:  10.1109/TNNLS.2012.2197412 
						
					 | 
			
| [25] | 
					 ZENG Jinshan, LIN Shaobo, WANG Yao, et al. L1/2 regularization: Convergence of iterative half thresholding algorithm[J]. IEEE Transactions on Signal Processing, 2014, 62(9): 2317–2329. doi:  10.1109/TSP.2014.2309076 
						
					 | 
			
| [26] | 
					 BI Hui, ZHU Daiyin, BI Guoan, et al. FMCW SAR sparse imaging based on approximated observation: An overview on current technologies[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 4825–4835. doi:  10.1109/JSTARS.2020.3017487 
						
					 | 
			
| [27] | 
					 FANG Jian, XU Zongben, ZHANG Bingchen, et al. Fast compressed sensing SAR imaging based on approximated observation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(1): 352–363. doi:  10.1109/JSTARS.2013.2263309 
						
					 |