CHEN Shiyang, HUANG Lijia, and YU Lei. A novel sinc interpolation for continuous PRF sampled sequences reconstruction in spotlight SAR[J]. Journal of Radars, 2019, 8(4): 527–536. doi: 10.12000/JR18095
Citation: CHEN Shiyang, HUANG Lijia, and YU Lei. A novel sinc interpolation for continuous PRF sampled sequences reconstruction in spotlight SAR[J]. Journal of Radars, 2019, 8(4): 527–536. doi: 10.12000/JR18095

A Novel sinc Interpolation for Continuous PRF Sampled Sequences Reconstruction in Spotlight SAR

DOI: 10.12000/JR18095
Funds:  The National Science Foundation of China (61331017)
More Information
  • Corresponding author: HUANG Lijia, iecas8huanglijia@163.com
  • Received Date: 2018-11-14
  • Rev Recd Date: 2019-02-22
  • Publish Date: 2019-08-28
  • This paper focuses on an improved imaging-algorithm for the spotlight Synthetic Aperture Radar (spotlight SAR) with continuous Pulse Repetition Frequency (PRF) variation in extremely high-resolution imaging-process. PRI variation is conventionally employed to resolve the problem of fixed blind ranges as well as the conflict of high-resolution and wide-swath; however, there are problems such as spectrum aliasing and ambiguous targets caused by nonuniform sampling. In this study, a novel sinc interpolation method is proposed to reconstruct a uniformly sampled signal from non-uniform Fourier Transform samples. Then a two-step processing approach combined with the novel sinc interpolation method is presented in the process of non-uniformly sampled echo imaging. The simulation proves the validity and accuracy of the proposed imaging algorithm. In addition, the computational cost of the novel sinc interpolation is further reduced compared to that of non-uniform Fourier transformation.

     

  • [1]
    丁赤飚, 刘佳音, 雷斌, 等. 高分三号SAR卫星系统级几何定位精度初探[J]. 雷达学报, 2017, 6(1): 11–16. doi: 10.12000/JR17024

    DING Chibiao, LIU Jiayin, LEI Bin, et al. Preliminary exploration of systematic geolocation accuracy of GF-3 SAR satellite system[J]. Journal of Radars, 2017, 6(1): 11–16. doi: 10.12000/JR17024
    [2]
    洪峻, 雷大力, 王宇, 等. 宽带宽方位波束对高分辨率SAR辐射定标的影响分析[J]. 雷达学报, 2015, 4(3): 276–286. doi: 10.12000/JR15015

    HONG Jun, LEI Dali, WANG Yu, et al. Wide band and wide azimuth beam effect on high-resolution synthetic aperture radar radiometric calibration[J]. Journal of Radars, 2015, 4(3): 276–286. doi: 10.12000/JR15015
    [3]
    聂鑫. 变波门大斜视滑动聚束SAR成像关键技术分析[J]. 电子与信息学报, 2016, 38(12): 3122–3128. doi: 10.11999/JEIT160812

    NIE Xin. Research on key technique of highly squinted sliding spotlight SAR imaging with varied receiving range bin[J]. Journal of Electronics &Information Technology, 2016, 38(12): 3122–3128. doi: 10.11999/JEIT160812
    [4]
    赵庆超, 张毅, 王宇, 等. 基于多帧超分辨率的方位向多通道星载SAR非均匀采样信号重建方法[J]. 雷达学报, 2017, 6(4): 408–419. doi: 10.12000/JR17035

    ZHAO Qingchao, ZHANG Yi, WANG R, et al. Signal reconstruction approach for multichannel SAR in azimuth based on multiframe super resolution[J]. Journal of Radars, 2017, 6(4): 408–419. doi: 10.12000/JR17035
    [5]
    赵耀, 邓云凯, 王宇, 等. 原始数据压缩对方位向多通道SAR系统影响研究[J]. 雷达学报, 2017, 6(4): 397–407. doi: 10.12000/JR17030

    ZHAO Yao, DENG Yunkai, WANG Yu, et al. Study of effect of raw data compression on azimuth multi-channel SAR system[J]. Journal of Radars, 2017, 6(4): 397–407. doi: 10.12000/JR17030
    [6]
    武其松, 井伟, 邢孟道, 等. MIMO-SAR大测绘带成像[J]. 电子与信息学报, 2009, 31(4): 772–775. doi: 10.3724/SP.J.1146.2007.01959

    WU Qisong, JING Wei, XING Mengdao, et al. Wide swath imaging with MIMO-SAR[J]. Journal of Electronics &Information Technology, 2009, 31(4): 772–775. doi: 10.3724/SP.J.1146.2007.01959
    [7]
    VILLANO M, KRIEGER G, and MOREIRA A. Staggered-SAR for high-resolution wide-swath imaging[C]. Proceedings of the IET International Conference on Radar Systems, Glasgow, UK, 2012: 1–6. doi: 10.1049/CP.2012.1600.
    [8]
    VILLANO M, JÄGER M, STEINBRECHER U, et al. Staggered SAR: Imaging a wide continuous swath by continuous PRI variation[C]. Proceedings of the Kleinheubacher Tagung, Miltenberg, Germany, 2014.
    [9]
    罗绣莲, 徐伟, 郭磊. 捷变PRF技术在斜视聚束SAR中的应用[J]. 雷达学报, 2015, 4(1): 70–77. doi: 10.12000/JR14149

    LUO Xiulian, XU Wei, and GUO Lei. The application of PRF variation to squint spotlight SAR[J]. Journal of Radars, 2015, 4(1): 70–77. doi: 10.12000/JR14149
    [10]
    唐江文, 邓云凯, 王宇, 等. 高分辨率滑动聚束SAR BP成像及其异构并行实现[J]. 雷达学报, 2017, 6(4): 368–375. doi: 10.12000/JR16053

    TANG Jiangwen, DENG Yunkai, WANG R, et al. High-resolution slide spotlight SAR imaging by BP algorithm and heterogeneous parallel implementation[J]. Journal of Radars, 2017, 6(4): 368–375. doi: 10.12000/JR16053
    [11]
    刘艳阳, 李真芳, 杨桃丽, 等. 一种单星方位多通道高分辨率宽测绘带SAR系统通道相位偏差时域估计新方法[J]. 电子与信息学报, 2012, 34(12): 2913–2919. doi: 10.3724/SP.J.1146.2012.00562

    LIU Yanyang, LI Zhenfang, YANG Taoli, et al. A novel channel phase bias estimation method for spaceborne along-track multi-channel HRWS SAR in time-domain[J]. Journal of Electronics &Information Technology, 2012, 34(12): 2913–2919. doi: 10.3724/SP.J.1146.2012.00562
    [12]
    刘艳阳, 李真芳, 索志勇, 等. 一种星载多通道高分辨率宽测绘带SAR系统通道相位偏差估计新方法[J]. 电子与信息学报, 2013, 35(8): 1862–1868. doi: 10.3724/SP.J.1146.2012.01424

    LIU Yanyang, LI Zhenfang, SUO Zhiyong, et al. A novel channel phase bias estimation method for spaceborne multi-channel high-resolution and wide-swath SAR[J]. Journal of Electronics &Information Technology, 2013, 35(8): 1862–1868. doi: 10.3724/SP.J.1146.2012.01424
    [13]
    王沛, 王翔宇, 李宁, 等. 超高分辨率机载SAR高精度子带拼接与处理方法研究[J]. 电子与信息学报, 2017, 39(10): 2325–2331. doi: 10.11999/JEIT170093

    WANG Pei, WANG Xiangyu, LI Ning, et al. Investigation on high precision sub-band synthesizing and processing method for very-high-resolution airborne SAR[J]. Journal of Electronics &Information Technology, 2017, 39(10): 2325–2331. doi: 10.11999/JEIT170093
    [14]
    吴玉峰, 孙光才, 杨军, 等. 周期性非均匀采样实现星载SAR高分辨宽测绘带成像[J]. 电子与信息学报, 2012, 34(2): 279–286. doi: 10.3724/SP.J.1146.2011.00498

    WU Yufeng, SUN Guangcai, YANG Jun, et al. High-resolution wide-swath imaging for spaceborne SAR based on periodic non-uniform sampling[J]. Journal of Electronics &Information Technology, 2012, 34(2): 279–286. doi: 10.3724/SP.J.1146.2011.00498
    [15]
    QIU Xue, LI Chunsheng, LI Jingwen, et al. A CZT-based continuous varying PRF polar format algorithm for highly squinted spotlight SAR[C]. Proceedings of 2015 IEEE International Geoscience and Remote Sensing Symposium, Milan, Italy, 2015: 4494–4497. doi: 1109/IGARSS.2015.7326826.
    [16]
    DUTT A and ROKHLIN V. Fast fourier transforms for nonequispaced data[J]. SIAM Journal on Scientific Computing, 1993, 14(6): 1368–1393. doi: 10.1137/0914081
  • Relative Articles

    [1]XIANG Yuming, TENG Fei, WANG Linhui, JIAO Niangang, WANG Feng, YOU Hongjian. Orthorectification of High-resolution SAR Images in Island Regions Based on Fast Multimodal Registration[J]. Journal of Radars, 2024, 13(4): 866-884. doi: 10.12000/JR24022
    [2]WANG Zhirui, KANG Yuzhuo, ZENG Xuan, WANG Yuelei, ZHANG Ting, SUN Xian. SAR-AIRcraft-1.0: High-resolution SAR Aircraft Detection and Recognition Dataset(in English)[J]. Journal of Radars, 2023, 12(4): 906-922. doi: 10.12000/JR23043
    [3]ZHANG Fan, LU Shengtao, XIANG Deliang, YUAN Xinzhe. An Improved Superpixel-based CFAR Method for High-resolution SAR Image Ship Target Detection[J]. Journal of Radars, 2023, 12(1): 120-139. doi: 10.12000/JR22067
    [4]GAO Zhiqi, SUN Shuchen, HUANG Pingping, QI Yaolong, XU Wei. Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm[J]. Journal of Radars, 2023, 12(5): 1044-1055. doi: 10.12000/JR22243
    [5]BI Hui, JIN Shuang, WANG Xiao, LI Yong, HAN Bing, HONG Wen. High-resolution High-dimensional Imaging of Urban Building Based on GaoFen-3 SAR Data(in English)[J]. Journal of Radars, 2022, 11(1): 40-51. doi: 10.12000/JR21113
    [6]LEI Yu, LENG Xiangguang, SUN Zhongzhen, JI Kefeng. Construction and Recognition Performance Analysis of Wide-swath SAR Maritime Large Moving Ships Dataset[J]. Journal of Radars, 2022, 11(3): 347-362. doi: 10.12000/JR21173
    [7]LI Chunsheng, YU Ze, CHEN Jie. Overview of Techniques for Improving High-resolution Spaceborne SAR Imaging and Image Quality[J]. Journal of Radars, 2019, 8(6): 717-731. doi: 10.12000/JR19085
    [8]SUN Xian, WANG Zhirui, SUN Yuanrui, DIAO Wenhui, ZHANG Yue, FU Kun. AIR-SARShip-1.0: High-resolution SAR Ship Detection Dataset (in English)[J]. Journal of Radars, 2019, 8(6): 852-863. doi: 10.12000/JR19097
    [9]WANG Chao, WANG Yanfei, LIU Chang, LIU Bidan. A New Approach to Range Cell Migration Correction for Ground Moving Targets in High-resolution SAR System Based on Parameter Estimation[J]. Journal of Radars, 2019, 8(1): 64-72. doi: 10.12000/JR18054
    [10]Sun Xiang, Song Hongjun, Wang Robert, Li Ning. POA Correction Method Using High-resolution Full-polarization SAR Image[J]. Journal of Radars, 2018, 7(4): 465-474. doi: 10.12000/JR18026
    [11]Dou Fangzheng, Diao Wenhui, Sun Xian, Zhang Yue, Fu Kun. Aircraft Reconstruction in High Resolution SAR Images Using Deep Shape Prior[J]. Journal of Radars, 2017, 6(5): 503-513. doi: 10.12000/JR17047
    [12]Tang Jiangwen, Deng Yunkai, Wang Robert, Zhao Shuo, Li Ning. High-resolution Slide Spotlight SAR Imaging by BP Algorithm and Heterogeneous Parallel Implementation[J]. Journal of Radars, 2017, 6(4): 368-375. doi: 10.12000/JR16053
    [13]Wen Xuejiao, Qiu Xiaolan, You Hongjian, Lu Xiaojun. Focusing and Parameter Estimation of Fluctuating Targets in High Resolution Spaceborne SAR[J]. Journal of Radars, 2017, 6(2): 213-220. doi: 10.12000/JR17005
    [14]Liao Ming-sheng, Wei Lian-huan, Wang Zi-yun, Timo Balz, Zhang Lu. Compressive Sensing in High-resolution 3D SAR Tomography of Urban Scenarios[J]. Journal of Radars, 2015, 4(2): 123-129. doi: 10.12000/JR15031
    [15]Zhang Yue-ting, Qiu Xiao-lan, Ding Chi-biao, Lei Bin, Fu Kun. The Simulation and Characteristics Analysis on High Resolution SAR Images of Bridges[J]. Journal of Radars, 2015, 4(1): 78-83. doi: 10.12000/JR14139
    [16]Xu Cheng-bin, Zhou Wei, Cong Yu, Guan Jian. Ship Analysis and Detection in High-resolution Pol-SAR Imagery Based on Peak Zone[J]. Journal of Radars, 2015, 4(3): 367-373. doi: 10.12000/JR14093
    [17]Luo Xiu-lian, Xu Wei, Guo Lei. The Application of PRF Variation to Squint Spotlight SAR[J]. Journal of Radars, 2015, 4(1): 70-77. doi: 10.12000/JR14149
    [18]Xing Meng-dao, Sun Guang-cai, Li Xue-shi. Study on SAR/GMTI Processing for High-resolution Wide-swath SAR System[J]. Journal of Radars, 2015, 4(4): 375-385. doi: 10.12000/JR15096
    [19]Jia Ying-xin, Wang Yan-fei. Design and Implementation of Wideband Exciter for an Ultra-high Resolution Airborne SAR System[J]. Journal of Radars, 2013, 2(1): 77-85. doi: 10.3724/SP.J.1300.2012.20100
    [20]Li Ning, Wang Ling, Zhang Gong. High-resolution Side-view and Top-view Imaging Method of Ship Targets Using Multistatic ISAR[J]. Journal of Radars, 2012, 1(2): 163-170. doi: 10.3724/SP.J.1300.2012.20021
  • Cited by

    Periodical cited type(4)

    1. 章飚,郭一超,张涛. 基于三角包络拟合的直扩信号时频二维精估算法. 战术导弹技术. 2023(02): 153-158 .
    2. Zhitong Nie,Zhiyang Chen,Yuanhao Li,Cheng Hu. 3D Target Localization Based on FrFT from Spaceborne Curve SAR. Journal of Beijing Institute of Technology. 2023(06): 717-726 .
    3. 陈杰,杨威,王鹏波,曾虹程,门志荣,李春升. 多方位角观测星载SAR技术研究. 雷达学报. 2020(02): 205-220 . 本站查看
    4. 邢孟道,林浩,陈溅来,孙光才,严棒棒. 多平台合成孔径雷达成像算法综述. 雷达学报. 2019(06): 732-757 . 本站查看

    Other cited types(11)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 32.3 %FULLTEXT: 32.3 %META: 62.2 %META: 62.2 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %其他: 0.9 %其他: 0.9 %Boydton: 0.0 %Boydton: 0.0 %Central District: 0.0 %Central District: 0.0 %China: 0.8 %China: 0.8 %Clarks Summit: 0.0 %Clarks Summit: 0.0 %France: 0.1 %France: 0.1 %Hanoi: 0.1 %Hanoi: 0.1 %India: 0.0 %India: 0.0 %Japan: 0.1 %Japan: 0.1 %North Point: 0.0 %North Point: 0.0 %Poland: 0.0 %Poland: 0.0 %San Jose: 0.0 %San Jose: 0.0 %Seattle: 0.0 %Seattle: 0.0 %Sri Lanka: 0.1 %Sri Lanka: 0.1 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %Toyosu: 0.0 %Toyosu: 0.0 %United States: 0.2 %United States: 0.2 %XX: 0.0 %XX: 0.0 %[]: 0.7 %[]: 0.7 %上海: 0.8 %上海: 0.8 %东京: 0.0 %东京: 0.0 %东莞: 0.1 %东莞: 0.1 %中卫: 0.1 %中卫: 0.1 %临汾: 0.0 %临汾: 0.0 %临沂: 0.0 %临沂: 0.0 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %亚特兰大: 0.0 %亚特兰大: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %六安: 0.0 %六安: 0.0 %兰州: 0.1 %兰州: 0.1 %兰河畔林堡: 0.1 %兰河畔林堡: 0.1 %兰辛: 0.0 %兰辛: 0.0 %内蒙古自治区呼和浩特: 0.0 %内蒙古自治区呼和浩特: 0.0 %列克星敦: 0.1 %列克星敦: 0.1 %包头: 0.0 %包头: 0.0 %北京: 16.3 %北京: 16.3 %北京市: 0.4 %北京市: 0.4 %十堰: 0.0 %十堰: 0.0 %华盛顿州: 0.0 %华盛顿州: 0.0 %南京: 1.7 %南京: 1.7 %南京市: 0.0 %南京市: 0.0 %南昌: 0.2 %南昌: 0.2 %南通: 0.0 %南通: 0.0 %南阳: 0.0 %南阳: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.0 %台州: 0.0 %合肥: 0.5 %合肥: 0.5 %吉林: 0.0 %吉林: 0.0 %周口: 0.0 %周口: 0.0 %呼伦贝尔: 0.0 %呼伦贝尔: 0.0 %呼和浩特: 0.2 %呼和浩特: 0.2 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.0 %唐山: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %圣何塞: 0.1 %圣何塞: 0.1 %大庆: 0.0 %大庆: 0.0 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %天津市: 0.0 %天津市: 0.0 %太原: 0.1 %太原: 0.1 %威海: 0.1 %威海: 0.1 %宁波: 0.1 %宁波: 0.1 %安康: 0.0 %安康: 0.0 %宣城: 0.1 %宣城: 0.1 %巴基斯坦: 0.1 %巴基斯坦: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %平顶山: 0.0 %平顶山: 0.0 %广州: 0.8 %广州: 0.8 %广西壮族自治区桂林: 0.0 %广西壮族自治区桂林: 0.0 %庆阳: 0.0 %庆阳: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 0.8 %张家口: 0.8 %张家口市: 0.0 %张家口市: 0.0 %张家界: 0.0 %张家界: 0.0 %徐州: 0.0 %徐州: 0.0 %成都: 0.9 %成都: 0.9 %成都市: 0.0 %成都市: 0.0 %成都市双流区: 0.0 %成都市双流区: 0.0 %扬州: 0.1 %扬州: 0.1 %抚州: 0.0 %抚州: 0.0 %拉萨: 0.0 %拉萨: 0.0 %无锡: 0.2 %无锡: 0.2 %旧金山: 0.0 %旧金山: 0.0 %昆明: 0.4 %昆明: 0.4 %晋城: 0.0 %晋城: 0.0 %景德镇: 0.0 %景德镇: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 0.7 %杭州: 0.7 %杭州市: 0.0 %杭州市: 0.0 %桂林: 0.2 %桂林: 0.2 %武汉: 0.4 %武汉: 0.4 %汉中: 0.0 %汉中: 0.0 %沈阳: 0.2 %沈阳: 0.2 %河内: 0.0 %河内: 0.0 %波德: 0.0 %波德: 0.0 %洛阳: 0.0 %洛阳: 0.0 %济南: 0.4 %济南: 0.4 %淄博: 0.0 %淄博: 0.0 %淮南: 0.1 %淮南: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.0 %温州: 0.0 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %湘潭市雨湖区: 0.0 %湘潭市雨湖区: 0.0 %滁州: 0.0 %滁州: 0.0 %漯河: 0.2 %漯河: 0.2 %漳州: 0.1 %漳州: 0.1 %烟台: 0.0 %烟台: 0.0 %玉林: 0.0 %玉林: 0.0 %珠海: 0.0 %珠海: 0.0 %百色: 0.0 %百色: 0.0 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.7 %石家庄: 0.7 %石家庄市: 0.2 %石家庄市: 0.2 %绍兴: 0.0 %绍兴: 0.0 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国加利福尼亚旧金山: 0.1 %美国加利福尼亚旧金山: 0.1 %聊城市: 0.0 %聊城市: 0.0 %芒廷维尤: 19.3 %芒廷维尤: 19.3 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.1 %苏州: 0.1 %英国: 0.0 %英国: 0.0 %茂名: 0.0 %茂名: 0.0 %荆州: 0.0 %荆州: 0.0 %菏泽: 0.0 %菏泽: 0.0 %萨尔斯堡: 0.1 %萨尔斯堡: 0.1 %葫芦岛: 0.0 %葫芦岛: 0.0 %衡水: 0.1 %衡水: 0.1 %衢州: 0.0 %衢州: 0.0 %西宁: 36.2 %西宁: 36.2 %西安: 1.6 %西安: 1.6 %西安市: 0.0 %西安市: 0.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %越南庆和: 0.0 %越南庆和: 0.0 %运城: 0.4 %运城: 0.4 %通化: 0.0 %通化: 0.0 %邢台: 0.0 %邢台: 0.0 %邯郸: 0.0 %邯郸: 0.0 %郑州: 0.4 %郑州: 0.4 %郑州市: 0.0 %郑州市: 0.0 %重庆: 0.2 %重庆: 0.2 %重庆市: 0.0 %重庆市: 0.0 %银川: 0.0 %银川: 0.0 %锦州: 0.0 %锦州: 0.0 %长春: 0.0 %长春: 0.0 %长沙: 0.9 %长沙: 0.9 %长沙市: 0.0 %长沙市: 0.0 %长沙市岳麓区: 0.0 %长沙市岳麓区: 0.0 %长治: 0.1 %长治: 0.1 %阜阳: 0.0 %阜阳: 0.0 %阳江: 0.0 %阳江: 0.0 %阳泉: 0.1 %阳泉: 0.1 %随州: 0.0 %随州: 0.0 %青岛: 0.1 %青岛: 0.1 %鞍山: 0.0 %鞍山: 0.0 %首尔: 0.1 %首尔: 0.1 %香港: 0.1 %香港: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %马德里自治区: 0.0 %马德里自治区: 0.0 %马鞍山: 0.0 %马鞍山: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他其他BoydtonCentral DistrictChinaClarks SummitFranceHanoiIndiaJapanNorth PointPolandSan JoseSeattleSri LankaTaiwan, ChinaToyosuUnited StatesXX[]上海东京东莞中卫临汾临沂丹东丽水亚特兰大佛山保定六安兰州兰河畔林堡兰辛内蒙古自治区呼和浩特列克星敦包头北京北京市十堰华盛顿州南京南京市南昌南通南阳台北台州合肥吉林周口呼伦贝尔呼和浩特哈尔滨哥伦布唐山嘉兴圣何塞大庆大连天津天津市太原威海宁波安康宣城巴基斯坦巴彦淖尔常州平顶山广州广西壮族自治区桂林庆阳开封张家口张家口市张家界徐州成都成都市成都市双流区扬州抚州拉萨无锡旧金山昆明晋城景德镇朝阳杭州杭州市桂林武汉汉中沈阳河内波德洛阳济南淄博淮南深圳温州渭南湖州湘潭湘潭市雨湖区滁州漯河漳州烟台玉林珠海百色盐城石家庄石家庄市绍兴美国伊利诺斯芝加哥美国加利福尼亚旧金山聊城市芒廷维尤芝加哥苏州英国茂名荆州菏泽萨尔斯堡葫芦岛衡水衢州西宁西安西安市诺沃克贵港贵阳越南庆和运城通化邢台邯郸郑州郑州市重庆重庆市银川锦州长春长沙长沙市长沙市岳麓区长治阜阳阳江阳泉随州青岛鞍山首尔香港香港特别行政区马德里自治区马鞍山齐齐哈尔龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3480) PDF downloads(277) Cited by(15)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint