Citation: | LI Chunsheng, YU Ze, and CHEN Jie. Overview of techniques for improving high-resolution spaceborne SAR imaging and image quality[J]. Journal of Radars, 2019, 8(6): 717–731. doi: 10.12000/JR19085 |
[1] |
WANG Pengbo, LIU Wei, CHEN Jie, et al. A high-order imaging algorithm for high-resolution spaceborne sar based on a modified equivalent squint range model[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(3): 1225–1235. doi: 10.1109/TGRS.2014.2336241
|
[2] |
CHEN Jie, KUANG Hui, YANG Wei, et al. A novel imaging algorithm for focusing high-resolution spaceborne SAR data in squinted sliding-spotlight mode[J]. IEEE Geoscience and Remote Sensing Letters, 2016, 13(10): 1577–1581. doi: 10.1109/LGRS.2016.2598066
|
[3] |
赵团, 邓云凯, 王宇, 等. 基于扇贝效应校正的改进滑动Mosaic全孔径成像算法[J]. 雷达学报, 2016, 5(5): 548–557. doi: 10.12000/JR16014
ZHAO Tuan, DENG Yunkai, WANG Yu, et al. Processing sliding mosaic mode data with modified full-aperture imaging algorithm integrating scalloping correction[J]. Journal of Radars, 2016, 5(5): 548–557. doi: 10.12000/JR16014
|
[4] |
TOWNSEND W. An initial assessment of the performance achieved by the Seasat-1 radar altimeter[J]. IEEE Journal of Oceanic Engineering, 1980, 5(2): 80–92. doi: 10.1109/JOE.1980.1145459
|
[5] |
李春升, 王伟杰, 王鹏波, 等. 星载SAR技术的现状与发展趋势[J]. 电子与信息学报, 2016, 38(1): 229–240.
LI Chunsheng, WANG Weijie, WANG Pengbo, et al. Current situation and development trends of spaceborne SAR technology[J]. Journal of Electronics &Information Technology, 2016, 38(1): 229–240.
|
[6] |
PITZ W and MILLER D. The TerraSAR-X satellite[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(2): 615–622. doi: 10.1109/TGRS.2009.2037432
|
[7] |
DE ZAN F and GUARNIERI A M. TOPSAR: Terrain observation by progressive scans[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2352–2360. doi: 10.1109/TGRS.2006.873853
|
[8] |
魏钟铨. 合成孔径雷达卫星[M]. 北京: 科学出版社, 2001.
WEI Zhongquan. Synthetic Aperture Radar Satellite[M]. Beijing: Science Press, 2001.
|
[9] |
CURLANDER J C and MCDONOUGH R N. Synthetic Aperture Radar: Systems and Signal Processing[M]. New York: John Wiley & Sons, 1991.
|
[10] |
PRATS-IRAOLA P, SCHEIBER R, RODRIGUEZ-CASSOLA M, et al. On the processing of very high resolution spaceborne SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6003–6016. doi: 10.1109/TGRS.2013.2294353
|
[11] |
万丽华, 魏立龙, 王磊. 基于全球台站的GNSS卫星精密定轨策略分析[J]. 测绘地理信息, 2019, 44(4): 53–58. doi: 10.14188/j.2095-6045.2017331
WAN Lihua, WEI Lilong, and WANG Lei. On the strategies of precise orbit determination of GNSS from global stations[J]. Journal of Geomatics, 2019, 44(4): 53–58. doi: 10.14188/j.2095-6045.2017331
|
[12] |
丁赤飚, 刘佳音, 雷斌, 等. 高分三号SAR卫星系统级几何定位精度初探[J]. 雷达学报, 2017, 6(1): 11–16. doi: 10.12000/JR17024
DING Chibiao, LIU Jiayin, LEI Bin, et al. Preliminary exploration of systematic geolocation accuracy of GF-3 SAR satellite system[J]. Journal of Radars, 2017, 6(1): 11–16. doi: 10.12000/JR17024
|
[13] |
秦显平. 星载GPS低轨卫星定轨理论及方法研究[D]. [博士论文], 解放军信息工程大学, 2009.
QIN Xianping. Research on precision orbit determination theory and method of low earth orbiter based on GPS technique[D]. [Ph.D. dissertation], PLA Information Engineering University, 2009.
|
[14] |
崔仁洁. 卫星姿态控制一体化仿真系统设计与研究[D]. [硕士论文], 浙江大学, 2017.
CUI Renjie. Design and research of the integrated simulation platform for satellites attitude control system[D].[Master dissertation], Zhejiang University, 2017.
|
[15] |
LI Zhou, LI Chunsheng, YU Ze, et al. Effects of receiver saturation on image formation[C]. 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, Canada, 2011: 535–538. doi: 10.1109/IGARSS.2011.6049183.
|
[16] |
SMITH A M. A new approach to range-Doppler SAR processing[J]. International Journal of Remote Sensing, 1991, 12(2): 235–251. doi: 10.1080/01431169108929650
|
[17] |
JIN M Y, CHENG F, and CHEN Ming. Chirp scaling algorithms for SAR processing[C]. 1993 IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 1993: 1169–1172. doi: 10.1109/IGARSS.1993.322129.
|
[18] |
LIU Yan, XING Mengdao, SUN Guangcai, et al. Echo model analyses and imaging algorithm for high-resolution SAR on high-speed platform[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(3): 933–950. doi: 10.1109/tgrs.2011.2162243
|
[19] |
WU Yuan, SUN Guangcai, YANG Chun, et al. Processing of very high resolution spaceborne sliding spotlight SAR data using velocity scaling[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1505–1518. doi: 10.1109/TGRS.2015.2481923
|
[20] |
YU Ze, WANG Shusen, and LI Zhou. An imaging compensation algorithm for spaceborne high-resolution SAR based on a continuous tangent motion model[J]. Remote Sensing, 2016, 8(3): 223. doi: 10.3390/rs8030223
|
[21] |
胡程, 董锡超, 李元昊. 大气层效应对地球同步轨道SAR系统性能影响研究[J]. 雷达学报, 2018, 7(4): 412–424. doi: 10.12000/JR18032
HU Cheng, DONG Xichao, and LI Yuanhao. Atmospheric effects on the performance of geosynchronous orbit SAR systems[J]. Journal of Radars, 2018, 7(4): 412–424. doi: 10.12000/JR18032
|
[22] |
YU Ze, LI Zhou, and WANG Shusen. An imaging compensation algorithm for correcting the impact of tropospheric delay on spaceborne high-resolution SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(9): 4825–4836. doi: 10.1109/tgrs.2015.2411261
|
[23] |
郭小洋, 李洋, 林赟, 等. 基于CSAR成像的相干斑统计模型研究[J]. 雷达学报, 2015, 4(6): 708–714. doi: 10.12000/JR15039
GUO Xiaoyang, LI Yang, LIN Yun, et al. Statistical models of speckle for circular SAR imaging[J]. Journal of Radars, 2015, 4(6): 708–714. doi: 10.12000/JR15039
|
[24] |
KUAN D T, SAWCHUK A A, STRAND T C, et al. Adaptive noise smoothing filter for images with signal-dependent noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7(2): 165–177. doi: 10.1109/TPAMI.1985.4767641
|
[25] |
ARGENTI F and ALPARONE L. Speckle removal from SAR images in the undecimated wavelet domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2363–2374. doi: 10.1109/tgrs.2002.805083
|
[26] |
YU Yongjian and ACTON S T. Speckle reducing anisotropic diffusion[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1260–1270. doi: 10.1109/TIP.2002.804276
|
[27] |
DELEDALLE C A, DENIS L, and TUPIN F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights[J]. IEEE Transactions on Image Processing, 2009, 18(12): 2661–2672. doi: 10.1109/TIP.2009.2029593
|
[28] |
PARRILLI S, PODERICO M, ANGELINO C V, et al. A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 606–616. doi: 10.1109/tgrs.2011.2161586
|
[29] |
WANG Puyang, ZHANG He, and PATEL V M. SAR image despeckling using a convolutional neural network[J]. IEEE Signal Processing Letters, 2017, 24(12): 1763–1767. doi: 10.1109/LSP.2017.2758203
|
[30] |
ZHANG Qian, YUAN Qiangqiang, LI Jie, et al. Learning a dilated residual network for SAR image despeckling[J]. Remote Sensing, 2018, 10(2): 196. doi: 10.3390/rs10020196
|
[31] |
WANG Puyang, ZHANG He, and VISHAL M P. Generative adversarial network-based restoration of speckled SAR images[C]. 2017 IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Curacao, Netherlands, 2017: 1–5. doi: 10.1109/CAMSAP.2017.8313133.
|
[32] |
YU Ze, WANG Wenqi, LI Chunsheng, et al. Speckle noise suppression in SAR images using a three-step algorithm[J]. Sensors, 2018, 18(11): 3643. doi: 10.3390/s18113643
|
[33] |
肖鹏, 吴有明, 于泽, 等. 一种基于压缩感知恢复算法的SAR图像方位模糊抑制方法[J]. 雷达学报, 2016, 5(1): 35–41. doi: 10.12000/JR16004
XIAO Peng, WU Youming, YU Ze, et al. Azimuth ambiguity suppression in SAR images based on compressive sensing recovery algorithm[J]. Journal of Radars, 2016, 5(1): 35–41. doi: 10.12000/JR16004
|
[34] |
MOREIRA A. Suppressing the azimuth ambiguities in synthetic aperture radar images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(4): 885–895. doi: 10.1109/36.239912
|
[35] |
CHEN Jie, IQBAL M, YANG Wei, et al. Mitigation of azimuth ambiguities in spaceborne stripmap SAR images using selective restoration[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(7): 4038–4045. doi: 10.1109/TGRS.2013.2279109
|
[36] |
GUARNIERI A M. Adaptive removal of azimuth ambiguities in SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3): 625–633. doi: 10.1109/tgrs.2004.842476
|
[37] |
WU Youming, YU Ze, XIAO Peng, et al. Suppression of azimuth ambiguities in spaceborne SAR images using spectral selection and extrapolation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2018, 56(10): 6134–6147. doi: 10.1109/TGRS.2018.2832193
|
[38] |
陶一凡. SAR图像旁瓣抑制和目标识别方法的研究及实现[D]. [硕士论文], 浙江工业大学, 2017.
TAO Yifan. Research and implement on methods of SAR image sidelobe suppression and target recognition[D]. [Master dissertation], Zhejiang University of Technology, 2017.
|
[39] |
ZHU Xiaoxiang, HE Feng, YE Fan, et al. Sidelobe suppression with resolution maintenance for SAR images via sparse representation[J]. Sensors, 2018, 18(5): 1589. doi: 10.3390/s18051589
|
[40] |
VARSHNEY L R and THOMAS D. Sidelobe reduction for matched filter range processing[C]. Proceedings of the 2003 IEEE Radar Conference, Huntsville, USA, 2003: 446–451. doi: 10.1109/NRC.2003.1203439.
|
[41] |
JIN Guodong, DENG Yunkai, WANG R, et al. An advanced nonlinear frequency modulation waveform for radar imaging with low sidelobe[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 6155–6168. doi: 10.1109/TGRS.2019.2904627
|
[42] |
SMITH B H. Generalization of spatially variant apodization to noninteger Nyquist sampling rates[J]. IEEE Transactions on Image Processing, 2000, 9(6): 1088–1093. doi: 10.1109/83.846250
|