Volume 7 Issue 2
May  2018
Turn off MathJax
Article Contents
Wang Wenqin, Chen Hui, Zheng Zhi, Zhang Shunsheng. Advances on Frequency Diverse Array Radar and Its Applications[J]. Journal of Radars, 2018, 7(2): 153-166. doi: 10.12000/JR18029
Citation: Wang Wenqin, Chen Hui, Zheng Zhi, Zhang Shunsheng. Advances on Frequency Diverse Array Radar and Its Applications[J]. Journal of Radars, 2018, 7(2): 153-166. doi: 10.12000/JR18029

Advances on Frequency Diverse Array Radar and Its Applications

doi: 10.12000/JR18029
Funds:  The National Natural Science Foundation of China (61501781)
  • Received Date: 2018-04-03
  • Rev Recd Date: 2018-04-23
  • Publish Date: 2018-04-28
  • Unlike the conventional phased array that provides only angle-dependent transmit beampattern, Frequency Diverse Array (FDA) employs a small frequency increment across its array elements to produce automatic beam scanning without requiring phase shifters or mechanical steering. FDA can produce both range-dependent and time-variant transmit beampatterns, which overcomes the disadvantages of conventional phased arrays that produce only angle-dependent beampattern. Thus, FDA has many promising applications. Based on a previous study conducted by the author, " Frequency Diverse Array Radar: Concept, Principle and Application” (Journal of Electronics & Information Technology, 2016, 38(4): 1000–1011), the current study introduces basic FDA radar concepts, principles, and application characteristics and reviews recent advances on FDA radar and its applications. In addition, several new promising applications of FDA technology are discussed, such as radar electronic warfare and radar-communications, as well as open technical challenges such as beampattern variance, effective receiver design, adaptive signal detection and estimation, and the implementation of practical FDA radar demos.

     

  • loading
  • [1]
    Antonik P, Wicks W C, Griffiths H D, et al.. Frequency diverse array radars[C]. Proceedings of 2006 IEEE Conference on Radar, Verona, NY, 2006: 215–217.
    [2]
    Wicks M C and Antonik P. Frequency diverse array with independent modulation of frequency, amplitude, and phase[Z]. US, 7, 319, 427, 2008.
    [3]
    Antonik P. An investigation of a frequency diverse array[D]. [Ph.D. dissertation], University College London, 2009.
    [4]
    王文钦, 邵怀宗, 陈慧. 频控阵雷达: 概念、原理与应用[J]. 电子与信息学报, 2016, 38(4): 1000–1011. DOI: 10.11999/JEIT151235

    Wang Wenqin, Shao Huaizong, and Chen Hui. Frequency diverse array radar: Concept, principle and application[J]. Journal of Electronics&Information Technology, 2016, 38(4): 1000–1011. DOI: 10.11999/JEIT151235
    [5]
    霍凯, 赵晶晶. OFDM新体制雷达研究现状与发展趋势[J]. 电子与信息学报, 2015, 37(11): 2776–2789. DOI: 10.11999/JEIT150335

    Huo Kai and Zhao Jingjing. The development and prospect of the new OFDM radar[J]. Journal of Electronics&Information Technology, 2015, 37(11): 2776–2789. DOI: 10.11999/JEIT150335
    [6]
    Wang W Q. MIMO SAR imaging: Potential and challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2013, 27(8): 18–23. DOI: 10.1109/MAES.2013.6575407
    [7]
    叶恺, 禹卫东, 王伟. 一种基于短偏移正交波形的MIMO SAR处理方案研究[J]. 雷达学报, 2017, 6(4): 376–387. DOI: 10.12000/JR17048

    Ye Kai, Yu Weidong, and Wang Wei. Investigation on processing scheme for MIMO SAR with STSO chirp waveforms[J]. Journal of Radars, 2017, 6(4): 376–387. DOI: 10.12000/JR17048
    [8]
    苏海, 张晓娟, 叶盛波, 等. 一种基于射频开关切换的伪随机编码超宽带多发多收雷达设计[J]. 雷达学报, 2017, 6(1): 43–54. DOI: 10.12000/JR16076

    Su Hai, Zhang Xiaojuan, Ye Shengbo, et al. Design of an ultra-wideband pseudo random coded MIMO radar based on radio frequency switches[J]. Journal of Radars, 2017, 6(1): 43–54. DOI: 10.12000/JR16076
    [9]
    郭艺夺, 宫健, 黄大荣, 等. 机载MIMO雷达收发联合降维STAP算法统一理论框架[J]. 雷达学报, 2016, 5(5): 517–525. DOI: 10.12000/JR16108

    Guo Yiduo, Gong Jian, Huang Darong, et al. Unified theoretical frame of a joint transmitter-receiver reduced dimensional STAP method for an airborne MIMO radar[J]. Journal of Radars, 2016, 5(5): 517–525. DOI: 10.12000/JR16108
    [10]
    王珽, 赵拥军, 胡涛. 机载MIMO雷达空时自适应处理技术研究进展[J]. 雷达学报, 2015, 4(2): 136–148. DOI: 10.12000/JR14091

    Wang Ting, Zhao Yong-jun, and Hu Tao. Overview of space-time adaptive processing for airborne MIMO radar[J]. Journal of Radars, 2015, 4(2): 136–148. DOI: 10.12000/JR14091
    [11]
    So H C, Amin M G, Blunt S, et al. Introduction to the special issue on time/frequency modulated array signal processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 225–227. DOI: 10.1109/JSTSP.2017.2652098
    [12]
    Brady S. Frequency diverse array radar: Signal characterization and measurement accuracy[D]. [Master dissertation], Air Force Institute of Technology, 2010.
    [13]
    Sammartino P F, Baker C J, and Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. DOI: 10.1109/TAES.2013.6404099
    [14]
    Wang W Q. Frequency diverse array antenna: New opportunities[J]. IEEE Antennas and Propagation Magazine, 2015, 57(2): 145–152. DOI: 10.1109/MAP.2015.2414692
    [15]
    Antonik P, Wicks M C, Griffiths H D, et al.. Range-dependent beamforming using element level waveform diversity[C]. Proceedings of International Waveform Diversity & Design Conference, Las Vegas, 2006: 1–4.
    [16]
    Higgins T and Blunt S. Analysis of range-angle coupled beamforming with frequency-diverse chirps[C]. Proceedings of International Waveform Diversity and Design Conference, Orlando, FL, 2009: 140–144.
    [17]
    Wang W Q. Range-angle dependent transmit beampattern synthesis for linear frequency diverse arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(8): 4073–4081. DOI: 10.1109/TAP.2013.2260515
    [18]
    Xu Y H, Shi X W, Xu J W, et al. Range-angle-dependent beamforming of pulsed frequency diverse array[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3262–3267. DOI: 10.1109/TAP.2015.2423698
    [19]
    Wang W Q and So H C. Transmit subaperturing for range and angle estimation in frequency diverse array radar[J]. IEEE Transactions on Signal Processing, 2014, 62(8): 2000–2011. DOI: 10.1109/TSP.2014.2305638
    [20]
    Xu J W, Zhu S Q, and Liao G S. Range ambiguous clutter suppression for airborne FDA-STAP radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2015, 9(8): 1620–1631. DOI: 10.1109/JSTSP.2015.2465353
    [21]
    Aytun A. Frequency diverse array radar[D]. [Master dissertation], Naval Postgraduate School, 2010.
    [22]
    Brady S. Frequency diverse array radar: Signal Characterization and measurement accuracy[D]. [Master dissertation], Air Force Institute of Technology, 2010.
    [23]
    Eker T. A conceptual evaluation of frequency diverse arrays and novel utilization of LFMCW[D]. [Ph.D. dissertation], Middle East Technical University, 2011.
    [24]
    Higgins T. Waveform diversity and range-coupled adaptive radar signal processing[D]. [Ph.D. dissertation], University of Kansas, 2011.
    [25]
    Huang J. Frequency diversity array: Theory and design[D]. [Ph.D. dissertation], University College London, 2010.
    [26]
    Farooq J. Frequency diversity for improving synthetic aperture radar imaging[D]. [Master dissertation], Air University Air Force Institute of Technology, 2009.
    [27]
    Wang W Q. Overview of frequency diverse array in radar and navigation applications[J]. IET Radar,Sonar&Navigation, 2016, 10(6): 1001–1012.
    [28]
    Cetintepe C. Analysis of frequency diverse arrays for radar and communication applications[D]. [Ph.D. dissertation], Middle East Technical University, 2015.
    [29]
    许京伟. 频率分集阵列雷达运动目标检测方法研究[D]. [博士论文], 西安电子科技大学, 2015.

    Xu Jing-wei. Study on moving target detection with frequency diverse array radar[D]. [Ph.D. dissertation], Xidian University, 2015.
    [30]
    高宽栋. 频控阵雷达阵列优化设计及其目标参数估计方法研究[D]. [博士论文], 电子科技大学, 2016.

    Gao Kuan-dong. Research of optimal array design and parameter estimation on frequency diverse array[D]. [Ph.D. dissertation], University of Electronic Science and Technology of China, 2016.
    [31]
    Jones A M. Frequency diverse array receiver architectures[D]. [Master dissertation], Wright State University, 2011.
    [32]
    Khan W, Qureshi I M, Basit A, et al. Range-bins-based MIMO frequency diverse array radar with logarithmic frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 885–888. DOI: 10.1109/LAWP.2015.2478964
    [33]
    Gao K D, Wang W Q, Cai J Y, et al. Decoupled frequency diverse array range-angle-dependent beampattern synthesis using non-linearly increasing frequency offsets[J]. IET Microwaves,Antennas&Propagation, 2016, 10(8): 880–884. DOI: 10.1049/iet-map.2015.0658
    [34]
    Liu Y M, Ruan H, Wang L, et al. The random frequency diverse array: A new antenna structure for uncoupled direction-range indication in active sensing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 295–308. DOI: 10.1109/JSTSP.2016.2627183
    [35]
    Wang W Q, So H C, and Farina A. An overview on time/frequency modulated array processing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 228–246. DOI: 10.1109/JSTSP.2016.2627182
    [36]
    Shao H Z, Dai J, Xiong J, et al. Dot-shaped range-angle beampattern synthesis for frequency diverse array[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1703–1706. DOI: 10.1109/LAWP.2016.2527818
    [37]
    Gao K D, Wang W Q, Chen H, et al. Transmit beamspace design for multi-carrier frequency diverse array sensor[J]. IEEE Sensors Journal, 2016, 16(14): 5709–5714. DOI: 10.1109/JSEN.2016.2573379
    [38]
    Xiong J, Wang W Q, Shao H Z, et al. Frequency diverse array transmit beampattern optimization with genetic algorithm[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 469–472. DOI: 10.1109/LAWP.2016.2584078
    [39]
    Khan W and Qureshi I M. Frequency diverse array radar with time-dependent frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2014, 13: 758–761. DOI: 10.1109/LAWP.2014.2315215
    [40]
    Yao A M, Wu W, and Fang D G. Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(10): 4434–4446. DOI: 10.1109/TAP.2016.2594075
    [41]
    Yao A M, Wu W, and Fang D G. Solutions of time-invariant spatial focusing for multi-targets using time modulated frequency diverse antenna arrays[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(2): 552–566. DOI: 10.1109/TAP.2016.2633902
    [42]
    Yao A M, Rocca P, Wu W, et al. Synthesis of time-modulated frequency diverse arrays for short-range multi-focusing[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 282–294. DOI: 10.1109/JSTSP.2016.2615267
    [43]
    Cheng Q, Zhu J, Xie T, et al. Time-invariant angle-range dependent directional modulation based on time-modulated frequency diverse arrays[J]. IEEE Access, 2017, 5: 26279–26290. DOI: 10.1109/ACCESS.2017.2772246
    [44]
    Yang Y Q, Wang H, Wang H Q, et al. Optimization of sparse frequency diverse array with time-invariant spatial-focusing beampattern[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(2): 351–354. DOI: 10.1109/LAWP.2018.2789979
    [45]
    Chen H, Shao H Z, and Wang W Q. Joint sparsity-based range-angle-dependent beampattern synthesis for frequency diverse array[J]. IEEE Access, 2017, 5: 15152–15161. DOI: 10.1109/ACCESS.2017.2731973
    [46]
    Chen B X, Chen X L, Huang Y, et al. Transmit beampattern synthesis for the FDA radar[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(1): 98–101. DOI: 10.1109/LAWP.2017.2776957
    [47]
    Li Q, Huang L, Zhang P C, et al. Beampattern synthesis for frequency diverse array via reweighted iterative phase compensation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 467–475. DOI: 10.1109/TAES.2017.2735638
    [48]
    Fartookzadeh M and Armaki S H M. Synthesis of serial-fed frequency diverse arrays with periodic triangular frequency-modulated continuous waveform[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(2): 263–266. DOI: 10.1109/LAWP.2017.2785438
    [49]
    Wang Y X, Wang G C, and Li W. Transmit beampattern design in range and angle domains for MIMO frequency diverse array radar[J].IEEE Antennas and Wireless Propagation Letters, 2017, 16: 1003–1006. DOI: 10.1109/LAWP.2016.2616193
    [50]
    Xu Y H, Shi X M, Li W T, et al. Flat-top beampattern synthesis in range and angle domains for frequency diverse array via second-order cone programming[J]. IEEE Antennas and Wireless Propagation Letters, 2016, 15: 1479–1482. DOI: 10.1109/LAWP.2015.2513758
    [51]
    Sammartino P F, Baker C J, and Griffiths H D. Frequency diverse MIMO techniques for radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 201–222. DOI: 10.1109/TAES.2013.6404099
    [52]
    Wang W Q and Shao H Z. Range-angle localization of targets by a double-pulse frequency diverse array radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2013, 8(1): 106–114. DOI: 10.1109/JSTSP.2013.2285528
    [53]
    Wang W Q. Subarray-based frequency diverse array radar for target range-angle estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(4): 3057–3067. DOI: 10.1109/TAES.2014.120804
    [54]
    Wang W Q, Dai M M, and Zheng Z. FDA radar ambiguity function characteristics analysis and optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018. DOI: 10.1109/TAES.2017.2785598
    [55]
    Wang W Q and Zhu C L. Nested array receiver with time-delayers for joint target range and angle estimation[J]. IET Radar,Sonar&Navigation, 2016, 10(8): 1384–1393. DOI: 10.1049/iet-rsn.2015.0450
    [56]
    Li J J, Li H B, and Ouyang S. Identifying unambiguous frequency pattern for target localisation using frequency diverse array[J]. Electronics Letters, 2017, 53(19): 1331–1333. DOI: 10.1049/el.2017.2355
    [57]
    Qin S, Zhang Y D, Amin M G, et al. Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 321–335. DOI: 10.1109/JSTSP.2016.2627184
    [58]
    Xu J W, Liao G S, Zhu S Q, et al. Joint range and angle estimation using MIMO radar with frequency diverse array[J]. IEEE Transactions on Signal Processing, 2015, 63(13): 3396–3410. DOI: 10.1109/TSP.2015.2422680
    [59]
    Xu J W, Liao G S, Zhang Y H, et al. An adaptive range-angle-Doppler processing approach for FDA-MIMO radar using three-dimensional localization[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 309–320. DOI: 10.1109/JSTSP.2016.2615269
    [60]
    Gao K D, Wang W Q, and Cai J Y. Frequency diverse array and MIMO hybrid radar transmitter design via Cramér-Rao lower bound minimisation[J]. IET Radar,Sonar&Navigation, 2016, 10(9): 1660–1670. DOI: 10.1049/iet-rsn.2015.0644
    [61]
    Xiong J, Wang W Q, and Gao K D. FDA-MIMO radar range-angle estimation: CRLB, MSE, and resolution analysis[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 284–294. DOI: 10.1109/TAES.2017.2756498
    [62]
    Cui C, Xu J, Gui R H, et al. Search-free DOD, DOA and range estimation for bistatic FDA-MIMO radar[J]. IEEE Access, 2018, 6: 15431–15445. DOI: 10.1109/ACCESS.2018.2816780
    [63]
    Li X X, Wang D W, Ma X Y, et al. FDS-MIMO radar low-altitude beam coverage performance analysis and optimization[J]. IEEE Transactions on Signal Processing, 2018, 66(9): 2494–2506. DOI: 10.1109/TSP.2018.2815011
    [64]
    Li X X, Wang D W, Wang W Q, et al. Range-angle localization of targets with planar frequency diverse subaperturing MIMO radar[J]. IEEE Access, 2018, 6: 12505–12517. DOI: 10.1109/ACCESS.2018.2810139
    [65]
    Gong P C, Wang W Q, Li F C, et al. Sparsity-aware transmit beamspace design for FDA-MIMO radar[J]. Signal Processing, 2018, 144: 99–103. DOI: 10.1016/j.sigpro.2017.10.008
    [66]
    Gui R H, Wang W Q, Cui C, et al. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis[J]. IEEE Transactions on Signal Processing, 2018, 66(1): 200–214. DOI: 10.1109/TSP.2017.2764860
    [67]
    Xu J W, Liao G S, Zhu S Q, et al. Deceptive jamming suppression with frequency diverse MIMO radar[J]. Signal Processing, 2015, 113: 9–17. DOI: 10.1016/j.sigpro.2015.01.014
    [68]
    Xu J W, Zhu S Q, and Liao G S. Space-time-range adaptive processing for airborne radar systems[J]. IEEE Sensors Journal, 2015, 15(3): 1602–1610. DOI: 10.1109/JSEN.2014.2364594
    [69]
    Xu J W, Liao G S, and So H C. Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(9): 5352–5364. DOI: 10.1109/TGRS.2016.2561308
    [70]
    Xu J W, Liao G S, Huang L, et al. Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar[J]. IEEE Transactions on Signal Processing, 2017, 65(4): 973–984. DOI: 10.1109/TSP.2016.2628340
    [71]
    Lin C C, Huang P M, Wang W W, et al. Unambiguous signal reconstruction approach for SAR imaging using frequency diverse array[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1628–1632. DOI: 10.1109/LGRS.2017.2727512
    [72]
    Wang C H, Xu J W, Liao G S, et al. A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array[J]. IEEE Journal of Selected Topics in Signal Processing, 2017, 11(2): 336–346. DOI: 10.1109/JSTSP.2016.2605064
    [73]
    Basit A, Qureshi I M, Khan W, et al. Range-angle-dependent beamforming for cognitive antenna array radar with frequency diversity[J]. Cognitive Computation, 2016, 8(2): 204–216. DOI: 10.1007/s12559-015-9348-6
    [74]
    Basit A, Khan W, Khan S, et al. Development of frequency diverse array radar technology: A review[J]. IET Radar,Sonar&Navigation, 2018, 12(2): 165–175. DOI: 10.1049/iet-rsn.2017.0207
    [75]
    Wang W Q. Cognitive frequency diverse array radar with situational awareness[J]. IET Radar,Sonar&Navigation, 2016, 10(2): 359–369. DOI: 10.1049/iet-rsn.2015.0211
    [76]
    Wang W Q. Moving-target tracking by cognitive RF stealth radar using frequency diverse array antenna[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(7): 3764–3773. DOI: 10.1109/TGRS.2016.2527057
    [77]
    Xiong J, Wang W Q, Cui C, et al. Cognitive FDA-MIMO radar for LPI transmit beamforming[J]. IET Radar,Sonar&Navigation, 2017, 11(10): 1574–1580. DOI: 10.1049/iet-rsn.2016.0551
    [78]
    Gui R H, Wang W Q, Pan Y, et al. Cognitive target tracking via angle-range-Doppler estimation with transmit subaperturing FDA radar[J]. IEEE Journal of Selected Topics in Signal Processing, 2018, 12(1): 76–89. DOI: 10.1109/JSTSP.2018.2793761
    [79]
    Eker T, Demir S, and Hizal A. Exploitation of Linear Frequency Modulated Continuous Waveform (LFMCW) for Frequency Diverse Arrays[J]. IEEE Transactions on Antennas and Propagation, 2013, 61(7): 3546–3553. DOI: 10.1109/TAP.2013.2258393
    [80]
    Cetintepe C and Demir S. Multipath characteristics of frequency diverse arrays over a ground plane[J]. IEEE Transactions on Antennas and Propagation, 2014, 62(7): 3567–3574. DOI: 10.1109/TAP.2014.2316292
    [81]
    Sturm C and Wiesbeck W. Waveform design and signal processing aspects for fusion of wireless communications and radar sensing[J]. Proceedings of the IEEE, 2011, 99(7): 1236–1259. DOI: 10.1109/JPROC.2011.2131110
    [82]
    刘志鹏. 雷达通信一体化波形研究[D]. [博士论文], 北京理工大学, 2015.

    Liu Zhi-peng. Waveform research on integration of radar and communication[D]. [Ph.D. dissertation], Beijing Institute of Technology, 2015.
    [83]
    Labib M, Marojevic V, Martone A F, et al. Coexistence between communications and radar systems: A survey[J]. URSI Radio Science Bulletin, 2017, 2017(362): 74–82.
    [84]
    Zheng L, Lops M, Wang X D, et al. Joint design of overlaid communication systems and pulsed radars[J]. IEEE Transactions on Signal Processing, 2018, 66(1): 139–154. DOI: 10.1109/TSP.2017.2755603
    [85]
    Shi C G, Wang F, Sellathurai M, et al. Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence[J].IEEE Transactions on Signal Processing, 2018, 66(5): 1316–1330. DOI: 10.1109/TSP.2017.2770086
    [86]
    Li M J, Wang W Q, and Zheng Z. Communication-embedded OFDM chirp waveform for delay-Doppler radar[J]. IET Radar,Sonar&Navigation, 2018, 12(3): 353–360. DOI: 10.1049.iet-rsn.2017.0369
    [87]
    Li B and Petropulu A P. Joint transmit designs for coexistence of MIMO wireless communications and sparse sensing radars in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6): 2846–2864. DOI: 10.1109/TAES.2017.2717518
    [88]
    Chiriyath A R, Paul B, and Bliss D W. Radar-communications convergence: Coexistence, cooperation, and co-design[J]. IEEE Transactions on Cognitive Communications and Networking, 2017, 3(1): 1–12. DOI: 10.1109/TCCN.2017.2666266
    [89]
    Wang W Q. DM using FDA antenna for secure transmission[J]. IET Microwaves,Antennas&Propagation, 2017, 11(3): 336–345. DOI: 10.1049/iet-map.2016.0303
    [90]
    Wang W Q. Potential transmit beamforming schemes for active LPI radars[J]. IEEE Aerospace and Electronic Systems Magazine, 2017, 32(5): 46–52. DOI: 10.1109/MAES.2017.150259
    [91]
    Ding Y, Zhang J, and Fusco V. Frequency diverse array OFDM transmitter for secure wireless communication[J]. Electronics Letters, 2015, 51(17): 1374–1376. DOI: 10.1049/el.2015.1491
    [92]
    Hu J S, Yan S H, Shu F, et al. Artificial-noise-aided secure transmission with directional modulation based on random frequency diverse arrays[J]. IEEE Access, 2017, 5: 1658–1667. DOI: 10.1109/ACCESS.2017.2653182
    [93]
    Nusenu S Y, Wang W Q, and Xiong J. Time-modulated FDA for physical-layer security[J]. IET Microwaves,Antennas&Propagation, 2017, 11(9): 1274–1279. DOI: 10.1049/iet-map.2016.0930
    [94]
    Lin J R, Li Q, Yang J T, et al. Physical-layer security for proximal legitimate user and eavesdropper: A frequency diverse array beamforming approach[J].IEEE Transactions on Information Forensics and Security, 2018, 13(3): 671–684. DOI: 10.1109/TIFS.2017.2765500
    [95]
    Wang Y B, Wang W Q, Chen H, et al. Optimal frequency diverse subarray design with Cramer-Rao lower bound minimization[J]. IEEE Antennas and Wireless Propagation Letters, 2015, 14: 1188–1191. DOI: 10.1109/LAWP.2015.2396951
    [96]
    Basit A, Qureshi I M, Khan W, et al. Beam pattern synthesis for an FDA radar with Hamming window-based nonuniform frequency offset[J]. IEEE Antennas and Wireless Propagation Letters, 2017, 16: 2283–2286. DOI: 10.1109/LAWP.2017.2714761
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(6275) PDF downloads(1089) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint