Volume 7 Issue 1
Feb.  2018
Turn off MathJax
Article Contents
Sun Wang, Li Liangsheng, Zhang Jing, Yin Hongcheng. Theoretical and Experimental Study on the Permittivity of CdTe in the Terahertz Band[J]. Journal of Radars, 2018, 7(1): 67-74. doi: 10.12000/JR17096
Citation: Sun Wang, Li Liangsheng, Zhang Jing, Yin Hongcheng. Theoretical and Experimental Study on the Permittivity of CdTe in the Terahertz Band[J]. Journal of Radars, 2018, 7(1): 67-74. doi: 10.12000/JR17096

Theoretical and Experimental Study on the Permittivity of CdTe in the Terahertz Band

DOI: 10.12000/JR17096
Funds:  The National Natural Science Foundation of China (6149069502)
  • Received Date: 2017-11-03
  • Rev Recd Date: 2018-01-21
  • Available Online: 2018-02-01
  • Publish Date: 2018-02-01
  • The phonon dispersion spectrum, eigenvector, and lattice vibration frequency of cadmium telluride with a zinc blende structure have been investigated using the density functional theory, and the permittivity of cadmium telluride crystal is numerically calculated. The permittivity of the crystal is measured using the terahertz time-domain spectroscopy system. The experimental results are consistent with the theoretical calculations on the modified local density approximation, the general gradient approximation, and the modified general gradient approximation. Finally, the differences among the three approximate exchange correlation potentials indicate that in the terahertz region, the permittivity of cadmium telluride is dominantly contributed by the coupling between electron and phonon; however, the phonon frequencies of transverse wave and longitudinal wave were sensitive to electron density distribution.

     

  • loading
  • [1]
    Lloyd-Hughes J and Jeon T I. A review of the terahertz conductivity of bulk and Nano-materials[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2012, 33(9): 871–925. DOI: 10.1007/s10762-012-9905-y.
    [2]
    程伟, 王迎新, 赵自然. 光电导太赫兹源新进展[J]. 激光与红外, 2011, 41(6): 597–604. DOI: 10.3969/j.issn.1001-5078.2011.06.001.

    Cheng Wei, Wang Ying-xin, and Zhao Zi-ran. New research progress of photoconductive terahertz source[J]. Laser&Infrared, 2011, 41(6): 597–604. DOI: 10.3969/j.issn.1001-5078.2011.06.001.
    [3]
    Withayachumnankul W, Png G M, Yin X X, et al. T-Ray sensing and imaging[J]. Proceedings of the IEEE, 2007, 95(8): 1528–1558. DOI: 10.1109/JPROC.2007.900325.
    [4]
    Scalari G, Maissen C, Turčinková D, et al. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial[J]. Science, 2012, 335(6074): 1323–1326. DOI: 10.1126/science.1216022.
    [5]
    Stantchev R I, Sun B Q, Hornett S M, et al. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector[J]. Science Advances, 2016, 2(6): e1600190. DOI: 10.1126/sciadv.1600190.
    [6]
    Dengler R J, Cooper K B, Chattopadhyay G, et al.. 600 GHz imaging radar with 2 cm range resolution[C]. The IEEE/MTT-S International Microwave Symposium, Honolulu, HI, USA, 2007: 1371–1374.
    [7]
    Cooper K B, Dengler R J, Llombart N, et al. THz imaging radar for standoff personnel screening[J]. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 169–182. DOI: 10.1109/TTHZ.2011.2159556.
    [8]
    Cooper K B, Dengler R J, Llombart N, et al. Penetrating 3-D imaging at 4- and 25-m range using a submillimeter-wave radar[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2771–2778. DOI: 10.1109/TMTT.2008.2007081.
    [9]
    Cooper K B, Dengler R J, Chattopadhyay G, et al. A high-resolution imaging radar at 580 GHz[J]. IEEE Microwave and Wireless Components Letters, 2008, 18(1): 64–66. DOI: 10.1109/LMWC.2007.912049.
    [10]
    Llombart N, Cooper K B, Dengler R J, et al. Confocal ellipsoidal reflector system for a mechanically scanned active terahertz imager[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(6): 1834–1841. DOI: 10.1109/TAP.2010.2046860.
    [11]
    Sheen D M, Hall T E, Severtsen R H, et al.. Standoff concealed weapon detection using a 350-GHz radar imaging system[C]. SPIE Passive Millimeter-Wave Imaging Technology XIII, Orlando, Florida, United States, 2010, 7670: 767008.
    [12]
    Sheen D M, McMakin D L, Hall T E, et al.. Active millimeter-wave standoff and portal imaging techniques for personnel screening[C]. 2009 IEEE Conference on Technologies for Homeland Security, Boston, MA, USA, 2009: 440–447.
    [13]
    Robertson D A, Marsh P N, Bolton D R, et al.. 340-GHz 3D radar imaging test bed with 10-Hz frame rate[C]. SPIE Passive and Active Millimeter-Wave Imaging XV, Baltimore, Maryland, 2012, 8362: 836206.
    [14]
    Wanke M C, Mangan M A, and Foltynowicz R J. Atmospheric propagation of THz radiation[R]. Albuquerque, NM, USA: Sandia National Laboratories, 2005: 2005–6389.
    [15]
    戴宁, 葛进, 胡淑红, 等. 太赫兹探测技术在遥感应用中的研究进展[J]. 中国电子科学研究院学报, 2009, 4(3): 232–237. DOI: 10.3969/j.issn.1673-5692.2009.03.002.

    Dai Ning, Ge Jin, Hu Shu-hong, et al. The development of the terahertz detection techniques in the applications of remote sensing[J]. Journal of CAEIT, 2009, 4(3): 232–237. DOI: 10.3969/j.issn.1673-5692.2009.03.002.
    [16]
    刘其军, 刘正堂, 冯丽萍, 等. 闪锌矿型CdTe电子结构和光学性质的第一性原理[J]. 中国科学院研究生院学报, 2009, 26(5): 615–620.

    Liu Qi-jun, Liu Zheng-tang, Feng Li-ping, et al. First-principle calculations of electronic structure and optical properties of Zinc blende CdTe[J]. Journal of the Graduate School of the Chinese Academy of Sciences, 2009, 26(5): 615–620.
    [17]
    孙立忠, 陈效双, 郭旭光, 等. CdTe和HgTe能带结构的第一性原理计算[J]. 红外与毫米波学报, 2004, 23(4): 271–275. DOI: 10.3321/j.issn:1001-9014.2004.04.007.

    Sun Li-zhong, Chen Xiao-shuang, Guo Xu-guang, et al. First principles calculation of the band structure of CdTe and HgTe[J]. Journal of Infrared and Millimeter Waves, 2004, 23(4): 271–275. DOI: 10.3321/j.issn:1001-9014.2004.04.007.
    [18]
    王琰, 侯延冰, 唐爱伟, 等. 不同稳定剂对水溶性CdTe纳米晶光学性质的影响[J]. 发光学报, 2008, 29(1): 171–175.

    Wang Yan, Hou Yan-bing, Tang Ai-wei, et al. Influence of different stabilizers on optical properties of water-soluble CdTe nanocrystals[J]. Chinese Journal of Luminescence, 2008, 29(1): 171–175.
    [19]
    Merad A E, Kanoun M B, Merad G, et al. Full-potential investigation of the electronic and optical properties of stressed CdTe and ZnTe[J]. Materials Chemistry and Physics, 2005, 92(2/3): 333–339. DOI: 10.1016/j.matchemphys.2004.10.031.
    [20]
    吴文智, 郑植仁, 金钦汉, 等. 水溶性CdTe量子点的三阶光学非线性极化特性[J]. 物理学报, 2008, 57(2): 1177–1182. DOI: 10.7498/aps.57.1177.

    Wu Wen-zhi, Zheng Zhi-ren, Jin Qin-han, et al. The property of third-order optical nonlinear susceptibility of water soluble CdTe quantum dots[J]. Acta Physica Sinica, 2008, 57(2): 1177–1182. DOI: 10.7498/aps.57.1177.
    [21]
    Vodopyanov L K. Optical studies of II–VI alloy lattice dynamics[J]. Journal of Alloys and Compounds, 2004, 371(1/2): 72–76. DOI: 10.1016/j.jallcom.2003.05.007.
    [22]
    Deligoz E, Colakoglu K, and Ciftci Y. Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe[J]. Physica B:Condensed Matter, 2006, 373(1): 124–130. DOI: 10.1016/j.physb.2005.11.099.
    [23]
    Polit J, Sheregii E M, Cebulski J, et al. Phonon and vibrational spectra of hydrogenated CdTe[J]. Journal of Applied Physics, 2006, 100(1): 013521. DOI: 10.1063/1.2211368.
    [24]
    Robouch B V, Zajdel P, Kisiel A, et al. Analysis of the phonon line profile of hydrogenated CdTe[J]. Journal of Physics:Condensed Matter, 2008, 20(32): 325217. DOI: 10.1088/0953-8984/20/32/325217.
    [25]
    Stergiou V C, Kontos A G, and Raptis Y S. Anharmonic effects and Faust-Henry coefficient of CdTe in the vicinity of the energy gap[J]. Physical Review B, 2008, 77(23): 235201. DOI: 10.1103/PhysRevB.77.235201.
    [26]
    Tan J J, Ji G F, Chen X R, et al. The high-pressure phase transitions and vibrational properties of zinc-blende XTe (X=Zn, Cd, Hg): Performance of local-density-approximation density functional theory[J]. Computational Materials Science, 2010, 48(4): 796–801. DOI: 10.1016/j.commatsci.2010.03.037.
    [27]
    Ceperley D M and Alder B J. Ground state of the electron gas by a stochastic method[J].Physical Review Letters, 1980, 45(7): 566–569. DOI: 10.1103/PhysRevLett.45.566.
    [28]
    Perdew J P and Zunger A. Self-interaction correction to density-functional approximations for many-electron systems[J]. Physical Review B, 1981, 23(10): 5048–5079. DOI: 10.1103/PhysRevB.23.5048.
    [29]
    Perdew J P and Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B, 1992, 45(23): 13244–13249. DOI: 10.1103/PhysRevB.45.13244.
    [30]
    Perdew J P, Burke K, and Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865–3868. DOI: 10.1103/PhysRevLett.77.3865.
    [31]
    黄昆, 韩汝琦. 固体物理[M]. 北京: 高等教育出版社, 1988: 104–111.

    Huang Kun and Han Ru-qi. Solid State Physics[M]. Beijing: Higher Education Press, 1988: 104–111.
    [32]
    Monkhorst H J and Pack J D. Special points for Brillonin-zone integrations[J]. Physical Revie B, 1976, 13(12): 5188–5192. DOI: 10.1103/PhysRevB.13.5188.
    [33]
    Rabadanov M K, Verin I A, Ivanov Y M, et al. Refinement of the atomic structure of CdTe single crystals[J]. Crystallography Reports, 2001, 46(4): 636–641. DOI: 10.1134/1.1387130.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2437) PDF downloads(475) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint