FANG Linlin, ZHOU Chao, WANG Rui, et al. RCS feature-aided insect target tracking algorithm[J]. Journal of Radars, 2019, 8(5): 598–605. doi: 10.12000/JR19067
Citation: Lin Yuchuan, Zhang Jianyun, Wu Yongjun, Zhou Qingsong. Matrix Inversion Method for Azimuth Reconstruction in Bistatic Spaceborne High-Resolution Wide-Swath SAR System[J]. Journal of Radars, 2017, 6(4): 388-396. doi: 10.12000/JR17060

Matrix Inversion Method for Azimuth Reconstruction in Bistatic Spaceborne High-Resolution Wide-Swath SAR System

DOI: 10.12000/JR17060
Funds:  Anhui Province Natural Science Foundation (1508085MF119)
  • Received Date: 2017-06-18
  • Rev Recd Date: 2017-08-23
  • Publish Date: 2017-08-28
  • In bistatic spaceborne High-Resolution Wide-Swath SAR systems (HRWS-SAR), the azimuth reconstruction to obtain a uniform sampling signal or Doppler spectrum is a crucial step in image processing because azimuth signals are generally of non-uniform sampling type. In this study, the variant transmitting distance to receiving distance radio is approximated to be a constant, the equivalence between the bistatic and monostatic SAR azimuth interchannel transfer functions is deduced, and the azimuth signal model in spaceborne HRWS-SAR with general bistatic configuration is established. Furthermore, the matrix inversion algorithm to reconstruct the azimuth signal is proposed; in addition, to measure the reconstruction performance, the formulae for the signal noise ratio scaling factor and the azimuth ambiguity signal ratio are provided. The azimuth reconstruction is simulated in several spaceborne HRWS-SAR systems with typical bistatic configuration, and the results show that the azimuth Doppler spectrum can be correctly reconstructed via the matrix inversion algorithm when the azimuth sampling is conducted without coinciding samples.

     

  • [1]
    Zink M, Bachmann M, Brautigam B, et al. TanDEM-X: The new global DEM takes shape[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(2): 8–23. DOI: 10.1109/MGRS.2014.2318895
    [2]
    Bueso-Bello J L, Prats-Iraola P, Martone M, et al.. Performance evaluation of the TanDEM-X quad polarization acquisitions in the science phase[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 627–632.
    [3]
    Moreira A, Krieger G, Hajnsek I, et al. Tandem-L: A highly innovative bistatic SAR mission for global observation of dynamic processes on the earth’s surface[J]. IEEE Geoscience and Remote Sensing Magazine, 2015, 3(2): 8–23. DOI: 10.1109/MGRS.2015.2437353
    [4]
    Huber S, Villano M, Younis M, et al.. Tandem-L: Design concepts for a next-generation spaceborne SAR system[C]. Proceedings of EUSAR 2016: 11th European Conference on Synthetic Aperture Radar, Hamburg, 2016: 1–5.
    [5]
    范强, 吕晓德, 张平, 等. 星载SAR DPCMAB技术的方位向非均匀采样研究[J]. 电子与信息学报, 2006, 28(1): 31–35

    Fan Qiang, Lü Xiao-de, Zhang Ping, et al. Study of nonuniform azimuth sampling of DPCMAB technique in spaceborne SAR[J]. Journal of Electronics&Information Technology, 2006, 28(1): 31–35
    [6]
    Currie A and Brown M A. Wide-swath SAR[J]. IEE Proceedings F-Radar and Signal Processing, 1992, 139(2): 122–135. DOI: 10.1049/ip-f-2.1992.0016
    [7]
    Yen J. On nonuniform sampling of bandwidth-limited signals[J]. IRE Transactions on Circuit Theory, 1956, 3(4): 251–257. DOI: 10.1109/TCT.1956.1086325
    [8]
    Gebert N, Krieger G, and Moreira A. Digital beamforming on receive: Techniques and optimization strategies for high-resolution wide-swath SAR imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(2): 564–592. DOI: 10.1109/TAES.2009.5089542
    [9]
    Krieger G, Gebert N, and Moreira A. Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(4): 260–264. DOI: 10.1109/LGRS.2004.832700
    [10]
    Cheng Pu, Wan Jian-wei, Xin Qin, et al. An improved azimuth reconstruction method for multichannel SAR using vandermonde matrix[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(1): 67–71. DOI: 10.1109/LGRS.2016.2626309
    [11]
    Liu Bao-chang and He Yi-jun. Improved DBF algorithm for multichannel high-resolution wide-swath SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 1209–1225. DOI: 10.1109/TGRS.2015.2476496
    [12]
    Liu Na, Wang R, Deng Yun-kai, et al. Modified multichannel reconstruction method of SAR with highly nonuniform spatial sampling[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10(2): 617–627. DOI: 10.1109/JSTARS.2016.2630048
    [13]
    Wang Ming-jian, Yu Wei-dong, Wang R, et al. Improved azimuth multichannel SAR imaging for configurations with redundant measurements[J]. IEEE Geoscience and Remote Sensing Letters, 2015, 12(8): 1610–1614. DOI: 10.1109/LGRS.2015.2415511
    [14]
    Cerutti-Maori D, Sikaneta I, Klare J, et al. MIMO SAR processing for multichannel high-resolution wide-swath radars[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(8): 5034–5055. DOI: 10.1109/TGRS.2013.2286520
    [15]
    Sikaneta I, Gierull C H, and Cerutti-Maori D. Optimum signal processing for multichannel SAR: With application to high-resolution wide-swath imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6095–6109. DOI: 10.1109/TGRS.2013.2294940
    [16]
    Sikaneta I, Cerutti-Maori D, Klare J, et al.. Comparison of multi-channel high-resolution wide-swath SAR processing methods[C]. Proceedings of 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) 2014, Quebec, 2014: 3834–3837. DOI: 10.1109/IGARSS.2014.6947320.
    [17]
    Zhao Shuo, Wang R, Deng Yun-kai, et al. Modifications on multichannel reconstruction algorithm for SAR processing based on periodic nonuniform sampling theory and nonuniform fast Fourier transform[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(11): 4998–5006. DOI: 10.1109/JSTARS.2015.2421303
  • Relative Articles

    [1]CHEN Shaonan, GU Jiaming, XU Chao, SUN Yimiao, WANG Siran, CHEN Zhanye, LIU Shuo, LI Huidong, DAI Junyan, HE Yuan, CHENG Qiang. Fall Feature Simulation and Wi-Fi Sensing Dataset Construction Based on Time-Domain Digital Coding Metasurface[J]. Journal of Radars. doi: 10.12000/JR24247
    [2]LAN Lan, ZHANG Xiang, XU Jingwei, LIAO Guisheng. Main-lobe Deceptive Jammers with Array Radars Using Space-time Multidimensional Coding[J]. Journal of Radars, 2025, 14(2): 439-455. doi: 10.12000/JR24229
    [3]CHEN Yan, WANG Zhanling, PANG Chen, LI Yongzhen, WANG Zhuang. Radar Active Deception Jamming Recognition Method Based on the Time-varying Polarization-conversion Metasurface[J]. Journal of Radars, 2024, 13(4): 929-940. doi: 10.12000/JR24028
    [4]LI Zhaohong, XU Huaping, DUAN Shuhang, LI Jingwen. Performance Analysis of SAR Active Deception Jamming Detection Based on Interferometric Phase[J]. Journal of Radars, 2024, 13(6): 1327-1336. doi: 10.12000/JR24162
    [5]ZHOU Qunyan, WANG Siran, DAI Junyan, CHENG Qiang. Simultaneous Direction of Arrival Estimation and Radar Cross-section Reduction Based on Space-time-coding Digital Metasurfaces[J]. Journal of Radars, 2024, 13(1): 150-159. doi: 10.12000/JR23216
    [6]ZHANG Shunsheng, CHEN Shuang, CHEN Xiaoying, LIU Ying, WANG Wenqin. Active Deception Jamming Recognition Method in Multimodal Radar Based on Small Samples[J]. Journal of Radars, 2023, 12(4): 882-891. doi: 10.12000/JR23104
    [7]DU Siyu, LIU Zhixing, WU Yaojun, SHA Minghui, QUAN Yinghui. Dense-repeated Jamming Suppression Algorithm Based on the Support Vector Machine for Frequency Agility Radar[J]. Journal of Radars, 2023, 12(1): 173-185. doi: 10.12000/JR22065
    [8]JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167
    [9]LIU Zhixing, DU Siyu, WU Yaojun, SHA Minghui, XING Mengdao, QUAN Yinghui. Anti-interrupted Sampling Repeater Jamming Method for Interpulse and Intrapulse Frequency-agile Radar[J]. Journal of Radars, 2022, 11(2): 301-312. doi: 10.12000/JR22001
    [10]LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031
    [11]YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061
    [12]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [13]WANG Yanfei, LI Heping, HAN Song. The Theory and Method of Pulse Coding for Radar and Its Applications[J]. Journal of Radars, 2019, 8(1): 1-16. doi: 10.12000/JR19023
    [14]ZENG Zheng, ZHANG Fubo, CHEN Longyong, BU Xiangxi, ZHOU Siyan. A Two-dimensional Mixed Baseline Method Based on MIMO-SAR for Countering Deceptive Jamming[J]. Journal of Radars, 2019, 8(1): 90-99. doi: 10.12000/JR18118
    [15]Wu Yufeng, Ye Shaohua, Feng Dazheng. Intra-pulse Spotlight SAR Imaging Method Based on Azimuth Phase Coding[J]. Journal of Radars, 2018, 7(4): 437-445. doi: 10.12000/JR17114
    [16]Xu Zhihuo, Shi Quan, Sun Ling. Novel Orthogonal Random Phase-Coded Pulsed Radar for Automotive Application[J]. Journal of Radars, 2018, 7(3): 364-375. doi: 10.12000/JR17083
    [17]Zhu Xiaojing, Li Fei, Wang Robert, Wang Wei, Sun Xiang. Range Ambiguity Suppression Approach for Quad-pol SAR Systems Based on Modified Azimuth Phase Coding[J]. Journal of Radars, 2017, 6(4): 420-431. doi: 10.12000/JR17015
    [18]Su Jian Song Zhi-yong Fu Qiang Long Zhao-fei, . Joint Tracking Method for the Unresolved Decoy and Target with Monopulse Radar[J]. Journal of Radars, 2015, 4(2): 160-171. doi: 10.12000/JR14094
    [19]Li Wei, Wang Xing-liang, Zou Kun, Xu Yi-meng, Zhang Qun. Anti Deceptive Jamming for MIMO Radar Based on Data Fusion and Notch Filtering (in English)[J]. Journal of Radars, 2012, 1(3): 246-252. doi: 10.3724/SP.J.1300.2012.20060
    [20]Liu Zhen, Wei Xi-zhang, Li Xiang. Novel Method of Unambiguous Moving Target Detection in Pulse-Doppler Radar with Random Pulse Repetition Interval[J]. Journal of Radars, 2012, 1(1): 28-35. doi: 10.3724/SP.J.1300.2013.10063
  • Cited by

    Periodical cited type(3)

    1. 周明纯. 舰载超短波电台编码调制可靠性测试研究. 环境技术. 2024(05): 19-25 .
    2. 施庆展,黄敬健,吴微微,马育红,王少植,郑滋浩,张晓发. 一种基于时间编码超表面的ISAR干扰方法. 电讯技术. 2024(10): 1553-1560 .
    3. 阮航,崔家豪,毛秀华,任建迎,罗镔延,曹航,李海峰. SAR目标识别对抗攻击综述:从数字域迈向物理域. 雷达学报. 2024(06): 1298-1326 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0401020304050
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.2 %FULLTEXT: 16.2 %META: 76.5 %META: 76.5 %PDF: 7.3 %PDF: 7.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.5 %其他: 13.5 %其他: 0.2 %其他: 0.2 %Brazil: 0.4 %Brazil: 0.4 %China: 0.5 %China: 0.5 %India: 0.0 %India: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.1 %United States: 0.1 %Viet Nam: 0.2 %Viet Nam: 0.2 %[]: 0.7 %[]: 0.7 %上海: 0.5 %上海: 0.5 %上海市: 0.0 %上海市: 0.0 %中卫: 0.0 %中卫: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兰辛: 0.1 %兰辛: 0.1 %加利福尼亚: 0.2 %加利福尼亚: 0.2 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 11.3 %北京: 11.3 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.9 %南京: 0.9 %南宁: 0.1 %南宁: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.4 %台州: 0.4 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.1 %合肥: 0.1 %周口: 0.1 %周口: 0.1 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %圣保罗: 0.2 %圣保罗: 0.2 %大庆: 0.0 %大庆: 0.0 %大连: 0.1 %大连: 0.1 %大阪: 0.0 %大阪: 0.0 %天津: 0.4 %天津: 0.4 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %岳阳: 0.0 %岳阳: 0.0 %巴中: 0.1 %巴中: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.3 %库比蒂诺: 0.3 %开封: 0.0 %开封: 0.0 %张家口: 1.1 %张家口: 1.1 %张家口市: 0.1 %张家口市: 0.1 %怀化: 0.0 %怀化: 0.0 %成都: 0.7 %成都: 0.7 %扬州: 0.1 %扬州: 0.1 %新乡: 0.3 %新乡: 0.3 %新布朗斯维克: 0.1 %新布朗斯维克: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋中: 0.0 %晋中: 0.0 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 2.4 %杭州: 2.4 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.0 %桂林: 0.0 %武汉: 0.6 %武汉: 0.6 %汉堡: 0.0 %汉堡: 0.0 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %法兰克福: 0.1 %法兰克福: 0.1 %泰安: 0.0 %泰安: 0.0 %济南: 0.1 %济南: 0.1 %淮北: 0.0 %淮北: 0.0 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.5 %深圳: 0.5 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %潍坊: 0.0 %潍坊: 0.0 %烟台: 0.0 %烟台: 0.0 %焦作: 0.0 %焦作: 0.0 %焦作市: 0.0 %焦作市: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.0 %珠海: 0.0 %白城: 0.1 %白城: 0.1 %石家庄: 0.5 %石家庄: 0.5 %石家庄市: 0.1 %石家庄市: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 22.1 %芒廷维尤: 22.1 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.1 %苏州: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 33.2 %西宁: 33.2 %西安: 0.6 %西安: 0.6 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.3 %贵港: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.3 %运城: 0.3 %连云港: 0.1 %连云港: 0.1 %郑州: 0.7 %郑州: 0.7 %重庆: 0.1 %重庆: 0.1 %铁岭: 0.0 %铁岭: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 0.5 %长沙: 0.5 %长治: 0.1 %长治: 0.1 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.1 %青岛: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %鹰潭: 0.0 %鹰潭: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他其他BrazilChinaIndiaTaiwan, ChinaUnited StatesViet Nam[]上海上海市中卫临汾丹东佛山保定兰辛加利福尼亚加利福尼亚州包头北京北海十堰南京南宁台北台州台湾省合肥周口呼和浩特哈尔滨哥伦布唐山圣保罗大庆大连大阪天津太原安康宣城岳阳巴中巴彦淖尔常州常德广州库比蒂诺开封张家口张家口市怀化成都扬州新乡新布朗斯维克无锡昆明晋中晋城朝阳杭州格兰特县桂林武汉汉堡沈阳沧州法兰克福泰安济南淮北淮南淮安深圳温州渭南湖州湘潭滨州漯河潍坊烟台焦作焦作市玉林珠海白城石家庄石家庄市福州秦皇岛美国伊利诺斯芝加哥芒廷维尤芝加哥苏州衢州西宁西安诺沃克贵港贵阳赣州运城连云港郑州重庆铁岭长春长沙长治阜阳阳泉青岛香港特别行政区鹰潭龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(3080) PDF downloads(543) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint