SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
Citation: Feng Dejun, Wang Junjie, Wang Junqing. Signature Analysis and Discrimination Method of Preceded Frequency-shift False Target[J]. Journal of Radars, 2017, 6(4): 325-331. doi: 10.12000/JR17026

Signature Analysis and Discrimination Method of Preceded Frequency-shift False Target

DOI: 10.12000/JR17026
Funds:  The National Natural Science Foundation of China (61372170)
  • Received Date: 2017-03-14
  • Rev Recd Date: 2017-06-12
  • Publish Date: 2017-08-28
  • Due to the effect of range-Doppler coupling between the time delay and shifted frequency of an LFM waveform, LFM radar is particularly susceptible to shift frequency jamming. A new deceptive jamming method, the Preceded Frequency-shift False Target (PFFT), has a similar signature to real radar targets, which indicates that conventional ECCM, such as leading-edge tracking, could be invalid when countering it. In this paper, the basic principle of PFFT is introduced and its signatures analyzed. Then, a new method for discrimination between a preceded false target generated by Digital Radio Frequency Memory (DRFM) and a radar target is proposed. By comparing the echo arrival time at the radar receiver front end with that estimated after a matched filter, the new method can extract the frequency modulation jamming signature and make a correct judgment. Simulation results are presented to verify the validity of the proposed method.

     

  • [1]
    Richards M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2005: 67–80.
    [2]
    Fitzgerald R J. Effects of range-Doppler coupling on chirp radar tracking accuracy[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(4): 528–532. DOI: 10.1109/TAES.1974.307809
    [3]
    刘建成, 王雪松, 刘忠, 等. 对线性调频脉压雷达的导前假目标群干扰[J]. 电子与信息学报, 2008, 30(6): 1350–1353

    Liu Jian-cheng, Wang Xue-song, Liu Zhong, et al. Preceded false target groups jamming against LFM pulse compression radars[J]. Journal of Electronics&Information Technology, 2008, 30(6): 1350–1353
    [4]
    刘建成, 刘忠, 王雪松, 等. 基于群延迟的前移干扰研究[J]. 自然科学进展, 2007, 17(1): 99–105

    Liu Jian-cheng, Liu Zhong, Wang Xue-song, et al. Study on preceded jamming based on group delay[J]. Progress in Natural Science, 2007, 17(1): 99–105
    [5]
    Soumekh M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 191–205. DOI: 10.1109/TAES.2006.1603414
    [6]
    Li Neng-jing and Zhang Yi-ting. A survey of radar ECM and ECCM[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3): 1110–1120. DOI: 10.1109/7.395232
    [7]
    Perez-Martinez F, Burgos-Garcia M, and Asensio-Lopez A. Group delay effects on the performance of wideband CW-LFM radars[J]. IEE Proceedings-Radar,Sonar and Navigation, 2001, 148(2): 95–100. DOI: 10.1049/ip-rsn:20010136
    [8]
    Peleg S and Porat B. Linear FM signal parameter estimation from discrete-time observations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(4): 607–616. DOI: 10.1109/7.85033
  • Relative Articles

    [1]CHEN Yan, ZHANG Rui, LI Yadong, SONG Ruiyuan, GENG Ruixu, GONG Hanqin, WANG Binquan, ZHANG Dongheng, HU Yang. An Overview of Human Pose Estimation Based on Wireless Signals[J]. Journal of Radars, 2025, 14(1): 229-247. doi: 10.12000/JR24189
    [2]LI Nian, LIU Jie, YU Junming, ZHU Zhihao, LIU Jianguang, GUO Shisheng, CHEN Jiahui, CUI Guolong, KONG Lingjiang, YANG Xiaobo. Building Layout Tomography Method Based on Joint Multidomain Direct Wave Estimation[J]. Journal of Radars, 2025, 14(2): 309-321. doi: 10.12000/JR24220
    [3]ZHAO Xiang, WANG Wei, LI Chenyang, GUAN Jian, LI Gang. Diagnosis of Sleep Apnea Hypopnea Syndrome Using Fusion of Micro-motion Signals from Millimeter-wave Radar and Pulse Wave Data[J]. Journal of Radars, 2025, 14(1): 102-116. doi: 10.12000/JR24107
    [4]JIN Biao, SUN Kangsheng, WU Hao, LI Zixuan, ZHANG Zhenkai, CAI Yan, LI Rongmin, ZHANG Xiangqun, DU Genyuan. 3D Point Cloud from Millimeter-wave Radar for Human Action Recognition: Dataset and Method[J]. Journal of Radars, 2025, 14(1): 73-90. doi: 10.12000/JR24195
    [5]SU Hanning, PAN Jiameng, BAO Qinglong, GUO Fucheng, HU Weidong. Anti-interrupted Sampling Repeater Jamming Method in the Waveform Domain before Matched Filtering[J]. Journal of Radars, 2024, 13(1): 240-252. doi: 10.12000/JR23149
    [6]DU Lan, CHEN Xiaoyang, SHI Yu, XUE Shikun, XIE Meng. MMRGait-1.0: A Radar Time-frequency Spectrogram Dataset for Gait Recognition under Multi-view and Multi-wearing Conditions[J]. Journal of Radars, 2023, 12(4): 892-905. doi: 10.12000/JR22227
    [7]WAQI Riti, LI Gang, ZHAO Zhichun, ZE Zhenghua. Feature Selection Method of Radar-based Road Target Recognition via Histogram Analysis and Adaptive Genetics[J]. Journal of Radars, 2023, 12(5): 1014-1030. doi: 10.12000/JR22245
    [8]HUANG Yan, ZHANG Hui, LAN Lyuhongkang, DENG Kun, YANG Yang, ZHANG Ruizhe, LIU Jiang, ZHANG Yanjun, WANG Yunxuan, ZHOU Rui, XU Jun, XI Xinsuo, ZHANG Xia, ZHENG Kaihang, LIU Yuming, HONG Wei. Overview of Signal Processing Techniques for Automotive Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 923-970. doi: 10.12000/JR23119
    [9]SHU Yue, FU Dongning, CHEN Zhanye, HUANG Yan, ZHANG Yanjun, TAN Xiaoheng, TAO Jun. Super-resolution DOA Estimation Method for a Moving Target Equipped with a Millimeter-wave Radar Based on RD-ANM[J]. Journal of Radars, 2023, 12(5): 986-999. doi: 10.12000/JR23040
    [10]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [11]DING Jinshan, ZHONG Chao, WEN Liwu, XU Zhong. Joint Detection of Moving Target in Video Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(3): 313-323. doi: 10.12000/JR22036
    [12]YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, LU Dawei, DENG Bin, MA Yanxin. Human Fall Detection Method Using Millimeter-wave Radar Based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656-664. doi: 10.12000/JR21015
    [13]DANG Xiangwei, QIN Fei, BU Xiangxi, LIANG Xingdong. A Robust Perception Algorithm Based on a Radar and LiDAR for Intelligent Driving[J]. Journal of Radars, 2021, 10(4): 622-631. doi: 10.12000/JR21036
    [14]Xie Pengfei, Zhang Lei, Wu Zhenhua. A Three-dimensional Imaging Algorithm Fusion with ω-K and BP Algorithm for Millimeter-wave Cylindrical Scanning[J]. Journal of Radars, 2018, 7(3): 387-394. doi: 10.12000/JR17112
    [15]Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053
    [16]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [17]Guo Zhen-yu, Lin Yun, Hong Wen. A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain[J]. Journal of Radars, 2015, 4(6): 681-688. doi: 10.12000/JR15046
    [18]Zhe Xiao-qiang, Chou Xiao-lan, Han Bing, Lei Bin. An Improved Doppler Rate Estimation Approach for Sliding Spotlight SAR Data Based on the Transposition Domain[J]. Journal of Radars, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008
    [19]Liu Hai-bo, Sheng Meng-meng, Yang Xiao-qian. A Study of MMW Collision Avoidance Radar System for Trains[J]. Journal of Radars, 2013, 2(2): 234-238. doi: 10.3724/SP.J.1300.2013.20091
    [20]Qiao Ming, Pan Zhou-hao, Liu Bo, Li Dao-jing. Analysis and Compensation Method Research on the Channel Leakage Error for Three-baseline MMWInSAR[J]. Journal of Radars, 2013, 2(1): 68-76. doi: 10.3724/SP.J.1300.2013.13008
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.1 %FULLTEXT: 36.1 %META: 48.9 %META: 48.9 %PDF: 14.9 %PDF: 14.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.8 %其他: 4.8 %其他: 1.8 %其他: 1.8 %Absecon: 0.1 %Absecon: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.6 %China: 0.6 %Halfweg: 0.1 %Halfweg: 0.1 %Herndon: 0.1 %Herndon: 0.1 %[]: 0.2 %[]: 0.2 %三亚: 0.1 %三亚: 0.1 %上海: 4.6 %上海: 4.6 %东京: 0.4 %东京: 0.4 %东京都: 0.1 %东京都: 0.1 %东莞: 0.2 %东莞: 0.2 %东营: 0.2 %东营: 0.2 %丹东: 0.1 %丹东: 0.1 %亳州: 0.1 %亳州: 0.1 %仙桃: 0.1 %仙桃: 0.1 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.6 %佛山: 0.6 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.4 %内江: 0.4 %利斯本: 0.2 %利斯本: 0.2 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %包头: 0.1 %包头: 0.1 %北京: 9.3 %北京: 9.3 %十堰: 0.1 %十堰: 0.1 %南京: 5.8 %南京: 5.8 %南充: 0.1 %南充: 0.1 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %卡拉奇: 0.1 %卡拉奇: 0.1 %卡梅尔: 0.3 %卡梅尔: 0.3 %印多尔: 0.2 %印多尔: 0.2 %厦门: 0.5 %厦门: 0.5 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 1.7 %合肥: 1.7 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸宁: 0.2 %咸宁: 0.2 %哈尔滨: 0.7 %哈尔滨: 0.7 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %太原: 0.2 %太原: 0.2 %威海: 0.5 %威海: 0.5 %娄底: 0.1 %娄底: 0.1 %宁波: 0.3 %宁波: 0.3 %安庆: 0.1 %安庆: 0.1 %安康: 0.3 %安康: 0.3 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.5 %宣城: 0.5 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴中: 0.1 %巴中: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.2 %常德: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 2.1 %广州: 2.1 %庆阳: 0.2 %庆阳: 0.2 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %廊坊: 0.1 %廊坊: 0.1 %开封: 0.5 %开封: 0.5 %张家口: 1.2 %张家口: 1.2 %张家界: 0.2 %张家界: 0.2 %徐州: 0.4 %徐州: 0.4 %惠州: 0.2 %惠州: 0.2 %慕尼黑: 0.2 %慕尼黑: 0.2 %成都: 4.8 %成都: 4.8 %扬州: 0.2 %扬州: 0.2 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %新竹: 0.3 %新竹: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.9 %昆明: 1.9 %晋城: 0.1 %晋城: 0.1 %普林斯顿: 0.1 %普林斯顿: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.1 %杭州: 3.1 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.4 %桂林: 0.4 %武威: 0.1 %武威: 0.1 %武汉: 0.6 %武汉: 0.6 %汕头: 0.1 %汕头: 0.1 %江门: 0.1 %江门: 0.1 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.2 %泰安: 0.2 %泰州: 0.1 %泰州: 0.1 %泸州: 0.1 %泸州: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.4 %济南: 0.4 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 2.5 %深圳: 2.5 %清远: 0.3 %清远: 0.3 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.1 %湛江: 0.1 %漯河: 1.0 %漯河: 1.0 %烟台: 0.1 %烟台: 0.1 %白城: 0.1 %白城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.1 %米兰: 0.1 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.7 %绍兴: 0.7 %绵阳: 0.1 %绵阳: 0.1 %罗马: 0.1 %罗马: 0.1 %自贡: 0.3 %自贡: 0.3 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.6 %苏州: 0.6 %茂名: 0.1 %茂名: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.3 %衡阳: 0.3 %襄阳: 0.1 %襄阳: 0.1 %西宁: 7.1 %西宁: 7.1 %西安: 3.4 %西安: 3.4 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.3 %费利蒙: 0.3 %运城: 0.5 %运城: 0.5 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.8 %郑州: 0.8 %重庆: 1.2 %重庆: 1.2 %金昌: 0.1 %金昌: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 2.4 %长沙: 2.4 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %青岛: 0.5 %青岛: 0.5 %首尔特别: 0.4 %首尔特别: 0.4 %香港: 0.1 %香港: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.1 %黄石: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他AbseconCentral DistrictChinaHalfwegHerndon[]三亚上海东京东京都东莞东营丹东亳州仙桃伦敦佛山兰州兰辛内江利斯本加利福尼亚州包头北京十堰南京南充南平南昌南通卡拉奇卡梅尔印多尔厦门台北台州合肥吉林呼和浩特咸宁哈尔滨哥伦布唐山嘉兴大连天津太原威海娄底宁波安庆安康宜宾宣城密蘇里城巴中布鲁塞尔常州常德平顶山广州庆阳库比蒂诺廊坊开封张家口张家界徐州惠州慕尼黑成都扬州揭阳新乡新竹无锡昆明晋城普林斯顿朝阳杭州格兰特县桂林武威武汉汕头江门沈阳泰安泰州泸州洛杉矶洛阳济南海口淄博淮南深圳清远温州渭南湖州湘潭湛江漯河烟台白城石家庄福州秦皇岛米兰纽约绍兴绵阳罗马自贡芒廷维尤芝加哥苏州茂名葫芦岛蚌埠衡阳襄阳西宁西安西雅图贵阳费利蒙运城邯郸邵阳郑州重庆金昌长春长沙阿姆斯特丹青岛首尔特别香港黄冈黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2573) PDF downloads(421) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint