SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
Citation: Feng Dejun, Wang Junjie, Wang Junqing. Signature Analysis and Discrimination Method of Preceded Frequency-shift False Target[J]. Journal of Radars, 2017, 6(4): 325-331. doi: 10.12000/JR17026

Signature Analysis and Discrimination Method of Preceded Frequency-shift False Target

DOI: 10.12000/JR17026
Funds:  The National Natural Science Foundation of China (61372170)
  • Received Date: 2017-03-14
  • Rev Recd Date: 2017-06-12
  • Publish Date: 2017-08-28
  • Due to the effect of range-Doppler coupling between the time delay and shifted frequency of an LFM waveform, LFM radar is particularly susceptible to shift frequency jamming. A new deceptive jamming method, the Preceded Frequency-shift False Target (PFFT), has a similar signature to real radar targets, which indicates that conventional ECCM, such as leading-edge tracking, could be invalid when countering it. In this paper, the basic principle of PFFT is introduced and its signatures analyzed. Then, a new method for discrimination between a preceded false target generated by Digital Radio Frequency Memory (DRFM) and a radar target is proposed. By comparing the echo arrival time at the radar receiver front end with that estimated after a matched filter, the new method can extract the frequency modulation jamming signature and make a correct judgment. Simulation results are presented to verify the validity of the proposed method.

     

  • [1]
    Richards M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2005: 67–80.
    [2]
    Fitzgerald R J. Effects of range-Doppler coupling on chirp radar tracking accuracy[J]. IEEE Transactions on Aerospace and Electronic Systems, 1974, AES-10(4): 528–532. DOI: 10.1109/TAES.1974.307809
    [3]
    刘建成, 王雪松, 刘忠, 等. 对线性调频脉压雷达的导前假目标群干扰[J]. 电子与信息学报, 2008, 30(6): 1350–1353

    Liu Jian-cheng, Wang Xue-song, Liu Zhong, et al. Preceded false target groups jamming against LFM pulse compression radars[J]. Journal of Electronics&Information Technology, 2008, 30(6): 1350–1353
    [4]
    刘建成, 刘忠, 王雪松, 等. 基于群延迟的前移干扰研究[J]. 自然科学进展, 2007, 17(1): 99–105

    Liu Jian-cheng, Liu Zhong, Wang Xue-song, et al. Study on preceded jamming based on group delay[J]. Progress in Natural Science, 2007, 17(1): 99–105
    [5]
    Soumekh M. SAR-ECCM using phase-perturbed LFM chirp signals and DRFM repeat jammer penalization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 191–205. DOI: 10.1109/TAES.2006.1603414
    [6]
    Li Neng-jing and Zhang Yi-ting. A survey of radar ECM and ECCM[J]. IEEE Transactions on Aerospace and Electronic Systems, 1995, 31(3): 1110–1120. DOI: 10.1109/7.395232
    [7]
    Perez-Martinez F, Burgos-Garcia M, and Asensio-Lopez A. Group delay effects on the performance of wideband CW-LFM radars[J]. IEE Proceedings-Radar,Sonar and Navigation, 2001, 148(2): 95–100. DOI: 10.1049/ip-rsn:20010136
    [8]
    Peleg S and Porat B. Linear FM signal parameter estimation from discrete-time observations[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(4): 607–616. DOI: 10.1109/7.85033
  • Relative Articles

    [1]ZHANG Peng, YAN Junkun, GAO Chang, LI Kang, LIU Hongwei. Integrated Transmission Resource Management Scheme for Multifunctional Radars in Dynamic Electromagnetic Environments[J]. Journal of Radars, 2025, 14(2): 456-469. doi: 10.12000/JR24230
    [2]WANG Xiang, WANG Yumiao, CHEN Xingyu, ZANG Chuanfei, CUI Guolong. Deep Learning-based Marine Target Detection Method with Multiple Feature Fusion[J]. Journal of Radars, 2024, 13(3): 554-564. doi: 10.12000/JR23105
    [3]NIE Lin, WEI Shunjun, LI Jiahui, ZHANG Hao, SHI Jun, WANG Mou, CHEN Siyuan, ZHANG Xinyan. Active Blanket Jamming Suppression Method for Spaceborne SAR Images Based on Regional Feature Refinement Perceptual Learning[J]. Journal of Radars, 2024, 13(5): 985-1003. doi: 10.12000/JR24072
    [4]ZHANG Jiaxiang, ZHANG Kaixiang, LIANG Zhennan, CHEN Xinliang, LIU Quanhua. An Intelligent Frequency Decision Method for a Frequency Agile Radar Based on Deep Reinforcement Learning[J]. Journal of Radars, 2024, 13(1): 227-239. doi: 10.12000/JR23197
    [5]CHEN Xiang, WANG Liandong, XU Xiong, SHEN Xujian, FENG Yuntian. A Review of Radio Frequency Fingerprinting Methods Based on Raw I/Q and Deep Learning[J]. Journal of Radars, 2023, 12(1): 214-234. doi: 10.12000/JR22140
    [6]ZHANG Yushi, LI Xiaoyu, ZHANG Jinpeng, XIA Xiaoyun. Sea Clutter Spectral Parameters Prediction and Influence Factor Analysis Based on Deep Learning[J]. Journal of Radars, 2023, 12(1): 110-119. doi: 10.12000/JR22133
    [7]DING Zihang, XIE Junwei, WANG Bo. Missing Covariance Matrix Recovery with the FDA-MIMO Radar Using Deep Learning Method[J]. Journal of Radars, 2023, 12(5): 1112-1124. doi: 10.12000/JR23002
    [8]LI Wanlu, XIANG Zheng, REN Peng. Filter Bank Multi-carrier Waveform Design for Low Probability of Intercepting Joint Radar and Communication System[J]. Journal of Radars, 2023, 12(2): 287-296. doi: 10.12000/JR22064
    [9]ZHU Hongyu, HE Lili, LIU Zheng, XIE Rong, RAN Lei. Online Decision-making Method for Frequency-agile Radar Based on Multi-Armed Bandit[J]. Journal of Radars, 2023, 12(6): 1263-1274. doi: 10.12000/JR23206
    [10]TIAN Ye, DING Chibiao, ZHANG Fubo, SHI Min’an. SAR Building Area Layover Detection Based on Deep Learning[J]. Journal of Radars, 2023, 12(2): 441-455. doi: 10.12000/JR23033
    [11]HE Mi, PING Qinwen, DAI Ran. Fall Detection Based on Deep Learning Fusing Ultrawideband Radar Spectrograms[J]. Journal of Radars, 2023, 12(2): 343-355. doi: 10.12000/JR22169
    [12]ZHU Peikun, LIANG Jing, LUO Zihan, SHEN Xiaofeng. Waveform Selection Method of Cognitive Radar Target Tracking Based on Reinforcement Learning[J]. Journal of Radars, 2023, 12(2): 412-424. doi: 10.12000/JR22239
    [13]XIE Feng, LIU Huanyu, HU Xikun, ZHONG Ping, LI Junbao. A Radar Anti-jamming Method under Multi-jamming Scenarios Based on Deep Reinforcement Learning in Complex Domains[J]. Journal of Radars, 2023, 12(6): 1290-1304. doi: 10.12000/JR23139
    [14]ZHU Hangui, FENG Weike, FENG Cunqian, ZOU Bo, LU Fuyu. Deep Unfolding Based Space-Time Adaptive Processing Method for Airborne Radar[J]. Journal of Radars, 2022, 11(4): 676-691. doi: 10.12000/JR22051
    [15]HUANG Zhongling, YAO Xiwen, HAN Junwei. Progress and Perspective on Physically Explainable Deep Learning for Synthetic Aperture Radar Image Interpretation(in English)[J]. Journal of Radars, 2022, 11(1): 107-125. doi: 10.12000/JR21165
    [16]DU Lan, WANG Zilin, GUO Yuchen, DU Yuang, YAN Junkun. Adaptive Region Proposal Selection for SAR Target Detection Using Reinforcement Learning[J]. Journal of Radars, 2022, 11(5): 884-896. doi: 10.12000/JR22121
    [17]ZHANG Dalin, YI Wei, KONG Lingjiang. Optimal Joint Allocation of Multijammer Resources for Jamming Netted Radar System[J]. Journal of Radars, 2021, 10(4): 595-606. doi: 10.12000/JR21071
    [18]Zhao Feixiang, Liu Yongxiang, Huo Kai. A Radar Target Classification Algorithm Based on Dropout Constrained Deep Extreme Learning Machine[J]. Journal of Radars, 2018, 7(5): 613-621. doi: 10.12000/JR18048
    [19]Wang Jun, Zheng Tong, Lei Peng, Wei Shaoming. Study on Deep Learning in Radar[J]. Journal of Radars, 2018, 7(4): 395-411. doi: 10.12000/JR18040
    [20]Xu Feng, Wang Haipeng, Jin Yaqiu. Deep Learning as Applied in SAR Target Recognition and Terrain Classification[J]. Journal of Radars, 2017, 6(2): 136-148. doi: 10.12000/JR16130
  • Cited by

    Periodical cited type(13)

    1. 赵金奇,李宇轩,刘子蓉,安庆,宋时雨,牛玉芬. 基于相似性衡量函数优化的SAR时空极化信息一体化洪涝变化检测方法. 测绘学报. 2024(12): 2375-2390 .
    2. 庄会富,王鹏,苏亚男,张祥,范洪冬. 基于多源时序SAR数据的涿州洪涝淹没动态监测. 自然资源遥感. 2024(04): 218-228 .
    3. 赵维谚,沈志,徐真,杨亮,雷明阳. 基于增强学习机制的SAR图像水域分割方法. 计算机应用与软件. 2023(05): 262-265+337 .
    4. 王磊,连增增. 基于Sentinel-1A的2020年鄱阳湖流域洪水灾害遥感监测. 地理空间信息. 2022(06): 43-46 .
    5. 李宁,郭志顺,毋琳,赵建辉. River-Net:面向河道提取的Refined-Lee Kernel深度神经网络模型. 雷达学报. 2022(03): 324-334 . 本站查看
    6. 黄平平,段盈宏,谭维贤,徐伟. 基于融合差异图的变化检测方法及其在洪灾中的应用. 雷达学报. 2021(01): 143-158 . 本站查看
    7. 董天成,杨肖,李卉,张志,齐睿. 基于Faster R-CNN和MorphACWE模型的SAR图像高原湖泊提取. 国土资源遥感. 2021(01): 129-137 .
    8. 李宁,吕宗森,郭拯危. 联合变化检测与子带对消技术的SAR图像干扰抑制方法. 系统工程与电子技术. 2021(09): 2484-2492 .
    9. 郭山川,杜培军,蒙亚平,王欣,唐鹏飞,林聪,夏俊士. 时序Sentinel-1A数据支持的长江中下游汛情动态监测. 遥感学报. 2021(10): 2127-2141 .
    10. 李宁,牛世林. 基于局部超分辨重建的高精度SAR图像水域分割方法. 雷达学报. 2020(01): 174-184 . 本站查看
    11. 吴瑞娟,何秀凤,王静. 结合像元级与对象级的滨海湿地变化检测方法. 地球信息科学学报. 2020(10): 2078-2087 .
    12. 冀广宇,董勇伟,卜运成,李焱磊,周良将,梁兴东. 基于目标相干性表征差异的多波段SAR相干变化检测方法. 雷达学报. 2018(04): 455-464 . 本站查看
    13. 牛世林,郭拯危,李宁,毋琳,赵建辉. 星载SAR水域分割研究进展与趋势分析. 聊城大学学报(自然科学版). 2018(02): 72-86 .

    Other cited types(16)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.7 %FULLTEXT: 36.7 %META: 58.2 %META: 58.2 %PDF: 5.1 %PDF: 5.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.4 %其他: 4.4 %其他: 0.4 %其他: 0.4 %Central District: 0.0 %Central District: 0.0 %China: 0.5 %China: 0.5 %Falls Church: 0.0 %Falls Church: 0.0 %India: 0.0 %India: 0.0 %Jonquiere: 0.1 %Jonquiere: 0.1 %Rochester: 0.0 %Rochester: 0.0 %Taiwan, China: 0.1 %Taiwan, China: 0.1 %Tiruchi: 0.1 %Tiruchi: 0.1 %United States: 0.0 %United States: 0.0 %[]: 0.7 %[]: 0.7 %三亚: 0.1 %三亚: 0.1 %上海: 1.1 %上海: 1.1 %东莞: 0.1 %东莞: 0.1 %临汾: 0.0 %临汾: 0.0 %临沂: 0.3 %临沂: 0.3 %丹东: 0.0 %丹东: 0.0 %丽江: 0.0 %丽江: 0.0 %亳州: 0.1 %亳州: 0.1 %佛山: 0.1 %佛山: 0.1 %保定: 0.1 %保定: 0.1 %信阳: 0.0 %信阳: 0.0 %六安: 0.0 %六安: 0.0 %兰州: 0.0 %兰州: 0.0 %兰辛: 0.0 %兰辛: 0.0 %内蒙古自治区包头: 0.1 %内蒙古自治区包头: 0.1 %加利福尼亚: 0.1 %加利福尼亚: 0.1 %包头: 0.0 %包头: 0.0 %北京: 15.6 %北京: 15.6 %北京市: 0.2 %北京市: 0.2 %北海: 0.1 %北海: 0.1 %十堰: 0.0 %十堰: 0.0 %南京: 1.3 %南京: 1.3 %南京市: 0.0 %南京市: 0.0 %南充: 0.0 %南充: 0.0 %南宁: 0.1 %南宁: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.1 %南通: 0.1 %南阳: 0.1 %南阳: 0.1 %厦门: 0.2 %厦门: 0.2 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %台湾省: 0.0 %台湾省: 0.0 %合肥: 0.2 %合肥: 0.2 %合肥市: 0.0 %合肥市: 0.0 %呼和浩特: 0.3 %呼和浩特: 0.3 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.3 %哈尔滨: 0.3 %哈尔滨市: 0.0 %哈尔滨市: 0.0 %哥伦布: 0.0 %哥伦布: 0.0 %嘉兴: 0.0 %嘉兴: 0.0 %四平: 0.2 %四平: 0.2 %大同: 0.1 %大同: 0.1 %大连: 0.2 %大连: 0.2 %天津: 0.4 %天津: 0.4 %威海: 0.0 %威海: 0.0 %孟买: 0.2 %孟买: 0.2 %宁夏回族自治区中卫: 0.0 %宁夏回族自治区中卫: 0.0 %宁波: 0.0 %宁波: 0.0 %安康: 0.1 %安康: 0.1 %宜春: 0.0 %宜春: 0.0 %宝鸡: 0.0 %宝鸡: 0.0 %宣城: 0.1 %宣城: 0.1 %宿迁: 0.1 %宿迁: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %平顶山: 0.1 %平顶山: 0.1 %广州: 0.9 %广州: 0.9 %庆阳: 0.0 %庆阳: 0.0 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %延安: 0.0 %延安: 0.0 %开封: 0.1 %开封: 0.1 %张家口: 0.9 %张家口: 0.9 %张家界: 0.0 %张家界: 0.0 %德罕: 0.2 %德罕: 0.2 %德里: 0.1 %德里: 0.1 %成都: 0.4 %成都: 0.4 %成都市: 0.0 %成都市: 0.0 %扬州: 0.1 %扬州: 0.1 %新乡: 0.5 %新乡: 0.5 %无锡: 0.1 %无锡: 0.1 %昆明: 0.2 %昆明: 0.2 %昌吉: 0.0 %昌吉: 0.0 %晋城: 0.0 %晋城: 0.0 %普洱: 0.1 %普洱: 0.1 %杭州: 0.9 %杭州: 0.9 %枣庄: 0.1 %枣庄: 0.1 %株洲: 0.2 %株洲: 0.2 %格兰特县: 0.1 %格兰特县: 0.1 %榆林: 0.0 %榆林: 0.0 %武汉: 0.5 %武汉: 0.5 %沈阳: 0.2 %沈阳: 0.2 %泰米尔纳德: 0.1 %泰米尔纳德: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 0.2 %济南: 0.2 %济宁: 0.0 %济宁: 0.0 %海口: 0.0 %海口: 0.0 %淮南: 0.0 %淮南: 0.0 %淮安: 0.0 %淮安: 0.0 %深圳: 0.7 %深圳: 0.7 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.0 %湘潭: 0.0 %滨州: 0.0 %滨州: 0.0 %漯河: 0.3 %漯河: 0.3 %潍坊: 0.1 %潍坊: 0.1 %潍坊市寿光: 0.1 %潍坊市寿光: 0.1 %烟台: 0.2 %烟台: 0.2 %玉林: 0.1 %玉林: 0.1 %珠海: 4.0 %珠海: 4.0 %白银: 0.0 %白银: 0.0 %益阳: 0.0 %益阳: 0.0 %石家庄: 0.2 %石家庄: 0.2 %石家庄市: 0.0 %石家庄市: 0.0 %秦皇岛: 0.1 %秦皇岛: 0.1 %纽约: 0.2 %纽约: 0.2 %绵阳: 0.1 %绵阳: 0.1 %美国伊利诺斯芝加哥: 0.0 %美国伊利诺斯芝加哥: 0.0 %舟山: 0.0 %舟山: 0.0 %芒廷维尤: 16.0 %芒廷维尤: 16.0 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.3 %苏州: 0.3 %莆田: 0.1 %莆田: 0.1 %莫斯科: 0.0 %莫斯科: 0.0 %菏泽: 0.0 %菏泽: 0.0 %营口: 0.1 %营口: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.1 %衢州: 0.1 %西宁: 35.0 %西宁: 35.0 %西安: 1.0 %西安: 1.0 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.3 %贵港: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赤峰: 0.1 %赤峰: 0.1 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %邢台: 0.1 %邢台: 0.1 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.4 %郑州: 1.4 %郴州: 0.0 %郴州: 0.0 %重庆: 0.2 %重庆: 0.2 %重庆市: 0.0 %重庆市: 0.0 %钱德勒: 0.1 %钱德勒: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 0.8 %长沙: 0.8 %长治: 0.1 %长治: 0.1 %阳泉: 0.0 %阳泉: 0.0 %雅加达: 0.1 %雅加达: 0.1 %青岛: 1.5 %青岛: 1.5 %香港特别行政区: 0.0 %香港特别行政区: 0.0 %齐齐哈尔: 0.0 %齐齐哈尔: 0.0 %其他其他Central DistrictChinaFalls ChurchIndiaJonquiereRochesterTaiwan, ChinaTiruchiUnited States[]三亚上海东莞临汾临沂丹东丽江亳州佛山保定信阳六安兰州兰辛内蒙古自治区包头加利福尼亚包头北京北京市北海十堰南京南京市南充南宁南昌南通南阳厦门台北台州台湾省合肥合肥市呼和浩特咸阳哈尔滨哈尔滨市哥伦布嘉兴四平大同大连天津威海孟买宁夏回族自治区中卫宁波安康宜春宝鸡宣城宿迁巴彦淖尔常州平顶山广州庆阳库比蒂诺延安开封张家口张家界德罕德里成都成都市扬州新乡无锡昆明昌吉晋城普洱杭州枣庄株洲格兰特县榆林武汉沈阳泰米尔纳德洛阳济南济宁海口淮南淮安深圳温州渭南湖州湘潭滨州漯河潍坊潍坊市寿光烟台玉林珠海白银益阳石家庄石家庄市秦皇岛纽约绵阳美国伊利诺斯芝加哥舟山芒廷维尤芜湖芝加哥苏州莆田莫斯科菏泽营口衡水衡阳衢州西宁西安诺沃克贵港贵阳赤峰运城连云港邢台邯郸郑州郴州重庆重庆市钱德勒长春长沙长治阳泉雅加达青岛香港特别行政区齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2575) PDF downloads(421) Cited by(29)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint