FANG Linlin, ZHOU Chao, WANG Rui, et al. RCS feature-aided insect target tracking algorithm[J]. Journal of Radars, 2019, 8(5): 598–605. doi: 10.12000/JR19067
Citation: Liang Ying, Zhang Qun, Luo Ying, Wu Yong. Vibrating Ground Target Detection and Feature Extraction of One-stationary Bistatic Frequency-modulated Continuous-wave Synthetic Aperture Radar[J]. Journal of Radars, 2015, 4(6): 648-657. doi: 10.12000/JR15082

Vibrating Ground Target Detection and Feature Extraction of One-stationary Bistatic Frequency-modulated Continuous-wave Synthetic Aperture Radar

DOI: 10.12000/JR15082
Funds:

The National Natural Science Foundation of China (61172169, 61471386)

  • Received Date: 2015-07-01
  • Rev Recd Date: 2015-09-13
  • Publish Date: 2015-12-28
  • One of the unique characteristics of a ground target is its micro-motion, which can be used for target classification and identification. In this study, methods for vibrating ground target detection and feature extraction of the one-stationary bistatic frequency-modulated continuous-wave Synthetic Aperture Radar (SAR) are studied. The Displaced Phase Center Antenna (DPCA) technique is adopted to suppress the ground clutter, allowing the ground-vibrating targets to be detected. Analysis of the received signal indicates that the DPCA processing results in a slow time-varying envelope, known as the Slow Time Envelope (STE). The STE has a direct effect on the micro-Doppler time-frequency curve, which therefore cannot be obtained unbroken. Furthermore, vibrating features are extracted by utilizing their relationship with the STE term. Finally, some simulations are provided to validate the theoretical derivation and effectiveness of the proposed extraction method.

     

  • [1]
    Entzminger J N. Joint STARS and GMTI: past, present and future[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35(2): 748-761.
    [2]
    Chen V C, Li F Y, Ho S S, et al.. Micro-Doppler Effect in Radar: Phenomenon, Model and Simulation Study[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 2-21.
    [3]
    Deng B, Wu G Z, Qin Y L, et al.. SAR/MMTI: an extension to conventional SAR/GMTI and a combination of SAR and micromotion techniques[C]. IET RADAR Conference, Guilin, China, 2009: 42-45.
    [4]
    Deng B, Wang H Q, Li X, et al.. Generalised likelihood ratio test detector for micro-motion targets in SAR raw signals[J]. IET Radar, Sonar and Navigation, 2011, 5(5): 528-535.
    [5]
    Deng B, Wang H Q, Wu C G, et al.. SAR micromotion target detection based on gapped sine curves[C]. IGARSS Munich, Germen, 2012: 29-32.
    [6]
    邓彬. 合成孔径雷达微动目标指示(SAR/MMTI)研究[D]. [博士论文], 国防科技大学, 2011.Deng Bin. Study on the Synthetic Aperyure Radar Micro-Motion Target Indication (SAR/MMTI)[D]. [Ph.D. dissertation], School of Electronic Science and Engineering, 2011.
    [7]
    邓彬, 吴称光, 秦玉亮, 等. 合成孔径雷达微动目标指示(SAR/MMTI)研究进展[J]. 电子学报, 2013, 41(12): 2436-2442.Deng Bin, Wu Cheng-guang, Qin Yu-liang, et al.. Advances in Synthetic Aperture Radar Micro-Motion Target Indication (SAR/MMTI)[J]. Acta Electronica Sinica, 2013, 41(12): 2436-2442.
    [8]
    Sparr T and Krane B. Micro-Doppler analysis of vibrating targets in SAR[J]. IEE Proceedings-Radar, Sonar and Navigation, 2003, 150(4): 277-283.
    [9]
    Regg M, Meier E, and Nesch D. Vibration and rotation in millimeter-wave SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 293-304.
    [10]
    Clemente C and Soraghan J J. Vibrating target micro-Doppler signature in bistatic SAR with a fixed receiver[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(8): 3219-3227.
    [11]
    Zhao G, Zhang C, and Fu Y W, et al.. Micro-Doppler analysis of vibrating target in MIMO SAR[C]. EUSAR Conference, Berlin, Germany, 2014: 624-627.
    [12]
    张伟, 童创明, 张群, 等. 基于DPCA杂波抑制的地面振动目标微多普勒提取[J]. 系统工程与电子技术, 2011, 33(4): 738-741.Zhang Wei, Tong Chuang-ming, Zhang Qun, et al.. Micro-Doppler extraction of ground vibrating targets based on SAR/DPCA technique[J]. Systems Engineering and Electronics, 2011, 33(4): 738-741.
    [13]
    Zhang W, Tong C, and Zhang Q, et al.. Extraction of vibrating features with dual-channel fixed-receiver bistatic SAR[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(3): 507-511.
    [14]
    Meta A, Hoogeboom P, and Ligthart L P. Signal processing for FMCW SAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(11): 3519-3532.
    [15]
    Liu Y, Deng Y, Wang R, et al.. Efficient and precise frequency-modulated continuous wave synthetic aperture radar raw signal simulation approach for extended scenes[J]. IET Radar, Sonar and Navigation, 2012, 6(9): 858-866.
    [16]
    Stove A G. Linear FMCW radar techniques[J]. IEE Proceedings F: Radar and Signal Processing, 1992, 139(5): 343-350.
    [17]
    梁毅, 李燕平, 邢孟道, 等. 一种平行航线双基聚束式FMCW SAR的两步处理方法[J]. 电子学报, 2013, 41(10): 1975-1982.Liang Yi, Li Yan-ping, Xing Meng-dao, et al.. A two-step processing approach for parallel bistatic spotlight FMCW SAR focusing[J]. Acta Electronica Sinica, 2013, 41(10): 1975-1982.
    [18]
    金日初, 王宇, 邓云凯, 等. 改进的一站固定式双基SAR频域成像方法[J]. 雷达学报, 2014, 3(2): 192-200. doi: 10.3724/SP.J.1300.2014.13115. Jin Ri-chu, Wang Yu, Deng Yun-kai, et al.. A modified frequency domain imaging method for one-stationary bistatic SAR[J]. Journal of Radars, 2014, 3(2): 192-200. doi: 10.3724/SP.J.1300.2014.13115.
    [19]
    梁毅, 王虹现, 邢孟道, 等. 基于FMCW的大斜视SAR成像研究[J]. 电子与信息学报, 2009, 31(4): 776-780. doi: 10.3724/SP.J.1146.2007.01851.Liang Yi, Wang Hong-xian, Xing Meng-dao, et al.. Imaging study of high squint SAR based on FMCW[J]. Journal of Electronics Information Technology, 2009, 31(4): 776-780. doi: 10.3724/SP.J.1146.2007.01851.
    [20]
    刘向阳, 廖桂生, 杨志伟, 等. 机载多通道雷达DPCA误差补偿及稳健的杂波抑制[J]. 电子学报, 2009, 37(9): 1982-1988.Liu Xiang-yang, Liao Gui-sheng, Yang Zhi-wei, et al.. DPCA error compensation and robust clutter suppression for multi-channel airborne radar[J]. Acta Electronica Sinica, 2009, 37(9): 1982-1988.
  • Relative Articles

    [1]CHEN Shaonan, GU Jiaming, XU Chao, SUN Yimiao, WANG Siran, CHEN Zhanye, LIU Shuo, LI Huidong, DAI Junyan, HE Yuan, CHENG Qiang. Fall Feature Simulation and Wi-Fi Sensing Dataset Construction Based on Time-Domain Digital Coding Metasurface[J]. Journal of Radars. doi: 10.12000/JR24247
    [2]LAN Lan, ZHANG Xiang, XU Jingwei, LIAO Guisheng. Main-lobe Deceptive Jammers with Array Radars Using Space-time Multidimensional Coding[J]. Journal of Radars, 2025, 14(2): 439-455. doi: 10.12000/JR24229
    [3]CHEN Yan, WANG Zhanling, PANG Chen, LI Yongzhen, WANG Zhuang. Radar Active Deception Jamming Recognition Method Based on the Time-varying Polarization-conversion Metasurface[J]. Journal of Radars, 2024, 13(4): 929-940. doi: 10.12000/JR24028
    [4]LI Zhaohong, XU Huaping, DUAN Shuhang, LI Jingwen. Performance Analysis of SAR Active Deception Jamming Detection Based on Interferometric Phase[J]. Journal of Radars, 2024, 13(6): 1327-1336. doi: 10.12000/JR24162
    [5]ZHOU Qunyan, WANG Siran, DAI Junyan, CHENG Qiang. Simultaneous Direction of Arrival Estimation and Radar Cross-section Reduction Based on Space-time-coding Digital Metasurfaces[J]. Journal of Radars, 2024, 13(1): 150-159. doi: 10.12000/JR23216
    [6]ZHANG Shunsheng, CHEN Shuang, CHEN Xiaoying, LIU Ying, WANG Wenqin. Active Deception Jamming Recognition Method in Multimodal Radar Based on Small Samples[J]. Journal of Radars, 2023, 12(4): 882-891. doi: 10.12000/JR23104
    [7]DU Siyu, LIU Zhixing, WU Yaojun, SHA Minghui, QUAN Yinghui. Dense-repeated Jamming Suppression Algorithm Based on the Support Vector Machine for Frequency Agility Radar[J]. Journal of Radars, 2023, 12(1): 173-185. doi: 10.12000/JR22065
    [8]JIANG Weixiang, TIAN Hanwei, SONG Chao, ZHANG Xin’ge. Digital Coding Metasurfaces: Toward Programmable and Smart Manipulations of Electromagnetic Functions(in English)[J]. Journal of Radars, 2022, 11(6): 1003-1019. doi: 10.12000/JR22167
    [9]LIU Zhixing, DU Siyu, WU Yaojun, SHA Minghui, XING Mengdao, QUAN Yinghui. Anti-interrupted Sampling Repeater Jamming Method for Interpulse and Intrapulse Frequency-agile Radar[J]. Journal of Radars, 2022, 11(2): 301-312. doi: 10.12000/JR22001
    [10]LIU Zhangmeng, YUAN Shuo, KANG Shiqian. Semantic Coding and Model Reconstruction of Multifunction Radar Pulse Train[J]. Journal of Radars, 2021, 10(4): 559-570. doi: 10.12000/JR21031
    [11]YASIR Saifullah, YANG Guomin, XU Feng. A Four-leaf Clover-shaped Coding Metasurface For Ultra-wideband Diffusion-like Scattering[J]. Journal of Radars, 2021, 10(3): 382-390. doi: 10.12000/JR21061
    [12]LI Yongzhen, HUANG Datong, XING Shiqi, WANG Xuesong. A Review of Synthetic Aperture Radar Jamming Technique[J]. Journal of Radars, 2020, 9(5): 753-764. doi: 10.12000/JR20087
    [13]WANG Yanfei, LI Heping, HAN Song. The Theory and Method of Pulse Coding for Radar and Its Applications[J]. Journal of Radars, 2019, 8(1): 1-16. doi: 10.12000/JR19023
    [14]ZENG Zheng, ZHANG Fubo, CHEN Longyong, BU Xiangxi, ZHOU Siyan. A Two-dimensional Mixed Baseline Method Based on MIMO-SAR for Countering Deceptive Jamming[J]. Journal of Radars, 2019, 8(1): 90-99. doi: 10.12000/JR18118
    [15]Wu Yufeng, Ye Shaohua, Feng Dazheng. Intra-pulse Spotlight SAR Imaging Method Based on Azimuth Phase Coding[J]. Journal of Radars, 2018, 7(4): 437-445. doi: 10.12000/JR17114
    [16]Xu Zhihuo, Shi Quan, Sun Ling. Novel Orthogonal Random Phase-Coded Pulsed Radar for Automotive Application[J]. Journal of Radars, 2018, 7(3): 364-375. doi: 10.12000/JR17083
    [17]Zhu Xiaojing, Li Fei, Wang Robert, Wang Wei, Sun Xiang. Range Ambiguity Suppression Approach for Quad-pol SAR Systems Based on Modified Azimuth Phase Coding[J]. Journal of Radars, 2017, 6(4): 420-431. doi: 10.12000/JR17015
    [18]Su Jian Song Zhi-yong Fu Qiang Long Zhao-fei, . Joint Tracking Method for the Unresolved Decoy and Target with Monopulse Radar[J]. Journal of Radars, 2015, 4(2): 160-171. doi: 10.12000/JR14094
    [19]Li Wei, Wang Xing-liang, Zou Kun, Xu Yi-meng, Zhang Qun. Anti Deceptive Jamming for MIMO Radar Based on Data Fusion and Notch Filtering (in English)[J]. Journal of Radars, 2012, 1(3): 246-252. doi: 10.3724/SP.J.1300.2012.20060
    [20]Liu Zhen, Wei Xi-zhang, Li Xiang. Novel Method of Unambiguous Moving Target Detection in Pulse-Doppler Radar with Random Pulse Repetition Interval[J]. Journal of Radars, 2012, 1(1): 28-35. doi: 10.3724/SP.J.1300.2013.10063
  • Cited by

    Periodical cited type(3)

    1. 周明纯. 舰载超短波电台编码调制可靠性测试研究. 环境技术. 2024(05): 19-25 .
    2. 施庆展,黄敬健,吴微微,马育红,王少植,郑滋浩,张晓发. 一种基于时间编码超表面的ISAR干扰方法. 电讯技术. 2024(10): 1553-1560 .
    3. 阮航,崔家豪,毛秀华,任建迎,罗镔延,曹航,李海峰. SAR目标识别对抗攻击综述:从数字域迈向物理域. 雷达学报. 2024(06): 1298-1326 . 本站查看

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.2 %FULLTEXT: 16.2 %META: 76.5 %META: 76.5 %PDF: 7.3 %PDF: 7.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.5 %其他: 13.5 %其他: 0.2 %其他: 0.2 %Brazil: 0.4 %Brazil: 0.4 %China: 0.5 %China: 0.5 %India: 0.0 %India: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %United States: 0.1 %United States: 0.1 %Viet Nam: 0.2 %Viet Nam: 0.2 %[]: 0.7 %[]: 0.7 %上海: 0.5 %上海: 0.5 %上海市: 0.0 %上海市: 0.0 %中卫: 0.0 %中卫: 0.0 %临汾: 0.1 %临汾: 0.1 %丹东: 0.0 %丹东: 0.0 %佛山: 0.0 %佛山: 0.0 %保定: 0.0 %保定: 0.0 %兰辛: 0.1 %兰辛: 0.1 %加利福尼亚: 0.2 %加利福尼亚: 0.2 %加利福尼亚州: 0.1 %加利福尼亚州: 0.1 %包头: 0.0 %包头: 0.0 %北京: 11.3 %北京: 11.3 %北海: 0.0 %北海: 0.0 %十堰: 0.1 %十堰: 0.1 %南京: 0.9 %南京: 0.9 %南宁: 0.1 %南宁: 0.1 %台北: 0.1 %台北: 0.1 %台州: 0.4 %台州: 0.4 %台湾省: 0.1 %台湾省: 0.1 %合肥: 0.1 %合肥: 0.1 %周口: 0.1 %周口: 0.1 %呼和浩特: 0.0 %呼和浩特: 0.0 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.1 %唐山: 0.1 %圣保罗: 0.2 %圣保罗: 0.2 %大庆: 0.0 %大庆: 0.0 %大连: 0.1 %大连: 0.1 %大阪: 0.0 %大阪: 0.0 %天津: 0.4 %天津: 0.4 %太原: 0.1 %太原: 0.1 %安康: 0.1 %安康: 0.1 %宣城: 0.1 %宣城: 0.1 %岳阳: 0.0 %岳阳: 0.0 %巴中: 0.1 %巴中: 0.1 %巴彦淖尔: 0.0 %巴彦淖尔: 0.0 %常州: 0.1 %常州: 0.1 %常德: 0.0 %常德: 0.0 %广州: 0.3 %广州: 0.3 %库比蒂诺: 0.3 %库比蒂诺: 0.3 %开封: 0.0 %开封: 0.0 %张家口: 1.1 %张家口: 1.1 %张家口市: 0.1 %张家口市: 0.1 %怀化: 0.0 %怀化: 0.0 %成都: 0.7 %成都: 0.7 %扬州: 0.1 %扬州: 0.1 %新乡: 0.3 %新乡: 0.3 %新布朗斯维克: 0.1 %新布朗斯维克: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋中: 0.0 %晋中: 0.0 %晋城: 0.0 %晋城: 0.0 %朝阳: 0.0 %朝阳: 0.0 %杭州: 2.4 %杭州: 2.4 %格兰特县: 0.0 %格兰特县: 0.0 %桂林: 0.0 %桂林: 0.0 %武汉: 0.6 %武汉: 0.6 %汉堡: 0.0 %汉堡: 0.0 %沈阳: 0.1 %沈阳: 0.1 %沧州: 0.1 %沧州: 0.1 %法兰克福: 0.1 %法兰克福: 0.1 %泰安: 0.0 %泰安: 0.0 %济南: 0.1 %济南: 0.1 %淮北: 0.0 %淮北: 0.0 %淮南: 0.0 %淮南: 0.0 %淮安: 0.1 %淮安: 0.1 %深圳: 0.5 %深圳: 0.5 %温州: 0.1 %温州: 0.1 %渭南: 0.0 %渭南: 0.0 %湖州: 0.2 %湖州: 0.2 %湘潭: 0.1 %湘潭: 0.1 %滨州: 0.0 %滨州: 0.0 %漯河: 0.2 %漯河: 0.2 %潍坊: 0.0 %潍坊: 0.0 %烟台: 0.0 %烟台: 0.0 %焦作: 0.0 %焦作: 0.0 %焦作市: 0.0 %焦作市: 0.0 %玉林: 0.1 %玉林: 0.1 %珠海: 0.0 %珠海: 0.0 %白城: 0.1 %白城: 0.1 %石家庄: 0.5 %石家庄: 0.5 %石家庄市: 0.1 %石家庄市: 0.1 %福州: 0.1 %福州: 0.1 %秦皇岛: 0.0 %秦皇岛: 0.0 %美国伊利诺斯芝加哥: 0.2 %美国伊利诺斯芝加哥: 0.2 %芒廷维尤: 22.1 %芒廷维尤: 22.1 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.1 %苏州: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 33.2 %西宁: 33.2 %西安: 0.6 %西安: 0.6 %诺沃克: 0.0 %诺沃克: 0.0 %贵港: 0.3 %贵港: 0.3 %贵阳: 0.1 %贵阳: 0.1 %赣州: 0.0 %赣州: 0.0 %运城: 0.3 %运城: 0.3 %连云港: 0.1 %连云港: 0.1 %郑州: 0.7 %郑州: 0.7 %重庆: 0.1 %重庆: 0.1 %铁岭: 0.0 %铁岭: 0.0 %长春: 0.2 %长春: 0.2 %长沙: 0.5 %长沙: 0.5 %长治: 0.1 %长治: 0.1 %阜阳: 0.1 %阜阳: 0.1 %阳泉: 0.0 %阳泉: 0.0 %青岛: 0.1 %青岛: 0.1 %香港特别行政区: 0.1 %香港特别行政区: 0.1 %鹰潭: 0.0 %鹰潭: 0.0 %龙岩: 0.0 %龙岩: 0.0 %其他其他BrazilChinaIndiaTaiwan, ChinaUnited StatesViet Nam[]上海上海市中卫临汾丹东佛山保定兰辛加利福尼亚加利福尼亚州包头北京北海十堰南京南宁台北台州台湾省合肥周口呼和浩特哈尔滨哥伦布唐山圣保罗大庆大连大阪天津太原安康宣城岳阳巴中巴彦淖尔常州常德广州库比蒂诺开封张家口张家口市怀化成都扬州新乡新布朗斯维克无锡昆明晋中晋城朝阳杭州格兰特县桂林武汉汉堡沈阳沧州法兰克福泰安济南淮北淮南淮安深圳温州渭南湖州湘潭滨州漯河潍坊烟台焦作焦作市玉林珠海白城石家庄石家庄市福州秦皇岛美国伊利诺斯芝加哥芒廷维尤芝加哥苏州衢州西宁西安诺沃克贵港贵阳赣州运城连云港郑州重庆铁岭长春长沙长治阜阳阳泉青岛香港特别行政区鹰潭龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2466) PDF downloads(1122) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint