Xu Zhen, Wang Robert, Li Ning, et al.. A novel approach to change detection in SAR images with CNN classification[J]. Journal of Radars, 2017, 6(5): 483–491. DOI: 10.12000/JR17075
Citation: Zeng Xiang-jie, Qi Xiang-yang. Spaceborne Regional Surveillance Ground Moving Target Indication Based on Squint-TOPSAR[J]. Journal of Radars, 2015, 4(4): 401-410. doi: 10.12000/JR14130

Spaceborne Regional Surveillance Ground Moving Target Indication Based on Squint-TOPSAR

DOI: 10.12000/JR14130
  • Received Date: 2014-11-14
  • Rev Recd Date: 2014-12-24
  • Publish Date: 2015-08-28
  • For military or civilian activities, it is important to monitor the direction of moving targets in a wide area. Traditional regional monitoring uses the airborne scanning mode (ScanSAR) within the limits of the national airspace. The inherent characteristics of ScanSAR do not apply to spaceborne regional monitoring. In this paper, the spaceborne regional surveillance Ground Moving Target Indication (GMTI) mode based on squint-TOPSAR is proposed. The proposed method uses the TOPSAR mode that improves the low SNR of spaceborne ScanSAR. The full-aperture imaging algorithm for squint-TOPSAR is used in data focusing. The Displaced Phase Center Antenna (DPCA) and Constant False Alarm Rate (CFAR) methods are used to accomplish the moving target indication. The relation between the interferometric phase and the speed of moving target is used to estimate the speed of the moving target and mark the target location in the SAR image. The differences between real and simulation data are analyzed. The simulation results demonstrate the effectiveness of the proposed method.

     

  • Relative Articles

    [1]WANG Mou, WEI Shunjun, SHEN Rong, ZHOU Zichen, SHI Jun, ZHANG Xiaoling. 3D SAR Imaging Method Based on Learned Sparse Prior[J]. Journal of Radars, 2023, 12(1): 36-52. doi: 10.12000/JR22101
    [2]Hong Wen, Wang Yanping, Lin Yun, Tan Weixian, Wu Yirong. Research Progress on Three-dimensional SAR Imaging Techniques[J]. Journal of Radars, 2018, 7(6): 633-654. doi: 10.12000/JR18109
    [3]Yan Min, Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. LASAR High-resolution 3D Imaging Algorithm Based on Sparse Bayesian Regularization[J]. Journal of Radars, 2018, 7(6): 705-716. doi: 10.12000/JR18067
    [4]Wei Shunjun, Tian Bokun, Zhang Xiaoling, Shi Jun. Compressed Sensing Linear Array SAR Autofocusing Imaging via Semi-definite Programming[J]. Journal of Radars, 2018, 7(6): 664-675. doi: 10.12000/JR17103
    [5]Liu Qiyong, Zhang Qun, Hong Wen, Su Linghua, Liang Jia. DLSLA 3D SAR Motion Error Compensation and Imaging Method Based on Parameter Estimation[J]. Journal of Radars, 2018, 7(6): 730-739. doi: 10.12000/JR18107
    [6]Tian He, Li Daojing, Qi Chunchao. Millimeter-wave Human Security Imaging Based on Frequency-domain Sparsity and Rapid Imaging Sparse Array Architecture[J]. Journal of Radars, 2018, 7(3): 376-386. doi: 10.12000/JR17082
    [7]Li Hang, Liang Xingdong, Zhang Fubo, Wu Yirong. 3D Imaging for Array InSAR Based on Gaussian Mixture Model Clustering[J]. Journal of Radars, 2017, 6(6): 630-639. doi: 10.12000/JR17020
    [8]Liu Xiangyang, Yang Jungang, Meng Jin, Zhang Xiao, Niu Dezhi. Sparse Three-dimensional Imaging Based on Hough Transform for Forward-looking Array SAR in Low SNR[J]. Journal of Radars, 2017, 6(3): 316-323. doi: 10.12000/JR17011
    [9]Hu Jingqiu, Liu Falin, Zhou Chongbin, Li Bo, Wang Dongjin. CS-SAR Imaging Method Based on Inverse Omega-K Algorithm[J]. Journal of Radars, 2017, 6(1): 25-33. doi: 10.12000/JR16027
    [10]Yang Jun, Zhang Qun, Luo Ying, Deng Donghu. Method for Multiple Targets Tracking in Cognitive Radar Based on Compressed Sensing[J]. Journal of Radars, 2016, 5(1): 90-98. doi: 10.12000/JR14107
    [11]Zhang Zenghui, Yu Wenxian. Feature Understanding and Target Detection for Sparse Microwave Synthetic Aperture Radar Images[J]. Journal of Radars, 2016, 5(1): 42-56. doi: 10.12000/JR15097
    [12]Li Liechen, Li Daojing, Huang Pingping. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain[J]. Journal of Radars, 2016, 5(1): 109-117. doi: 10.12000/JR14159
    [13]Xiao Peng, Wu Youming, Yu Ze, Li Chunsheng. Azimuth Ambiguity Suppression in SAR Images Based on Compressive Sensing Recovery Algorithm[J]. Journal of Radars, 2016, 5(1): 35-41. doi: 10.12000/JR16004
    [14]Gu Fufei, Zhang Qun, Yang Qiu, Huo Wenjun, Wang Min. Compressed Sensing Imaging Algorithm for High-squint SAR Based on NCS Operator[J]. Journal of Radars, 2016, 5(1): 16-24. doi: 10.12000/JR15035
    [15]Wang Aichun, Xiang Maosheng. SAR Tomography Based on Block Compressive Sensing[J]. Journal of Radars, 2016, 5(1): 57-64. doi: 10.12000/JR16006
    [16]Zhou Hui, Zhao Feng-jun, Yu Wei-dong, Yang Jian. SAR Imaging of Ground Moving Targets with Non-ideal Motion Error Compensation(in English)[J]. Journal of Radars, 2015, 4(3): 265-275. doi: 10.12000/JR15024
    [17]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [18]Wu Yi-rong, Hong Wen, Zhang Bing-chen, Jiang Cheng-long, Zhang Zhe, Zhao Yao. Current Developments of Sparse Microwave Imaging[J]. Journal of Radars, 2014, 3(4): 383-395. doi: 10.3724/SP.J.1300.2014.14105
    [19]Zhao Yao, Zhang Bing-chen, Hong Wen, Wu Yi-rong. RIPless Based Radar Waveform Analysis in Sparse Microwave Imaging[J]. Journal of Radars, 2013, 2(3): 265-270. doi: 10.3724/SP.J.1300.2013.13032
    [20]Zhong Li-hua, Hu Dong-hui, Ding Chi-biao, Zhang Wen-yi. ISAR Sparse Aperture Imaging Algorithm for Large Size Target[J]. Journal of Radars, 2012, 1(3): 292-300. doi: 10.3724/SP.J.1300.2012.20033
  • Cited by

    Periodical cited type(7)

    1. 黄钟泠,吴冲,姚西文,王立鹏,韩军伟. 基于时频分析的SAR目标微波视觉特性智能感知方法与应用. 雷达学报. 2024(02): 331-344 . 本站查看
    2. 丁柏圆,周春雨. 结合三维电磁散射模型和深度学习的SAR目标识别框架设计. 航天电子对抗. 2024(02): 34-38+64 .
    3. 张旭,徐丰,金亚秋. 典型几何基元的高频散射建模方法梳理. 雷达学报. 2022(01): 126-143 . 本站查看
    4. 顾丹丹,廖意,王晓冰. 雷达目标特性知识引导的智能识别技术进展与思考. 制导与引信. 2022(04): 57-64 .
    5. 邢孟道,谢意远,高悦欣,张金松,刘嘉铭,吴之鑫. 电磁散射特征提取与成像识别算法综述. 雷达学报. 2022(06): 921-942 . 本站查看
    6. 陆金文,闫华,殷红成,张磊,董纯柱. 用于三维散射中心SBR建模的边缘绕射修正. 西安电子科技大学学报. 2021(02): 117-124+189 .
    7. 陆金文,闫华,张磊,殷红成. 基于弹跳射线技术的三维GTD模型构建方法. 系统工程与电子技术. 2021(08): 2028-2036 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030405060
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 21.8 %FULLTEXT: 21.8 %META: 68.3 %META: 68.3 %PDF: 9.9 %PDF: 9.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 10.6 %其他: 10.6 %其他: 0.3 %其他: 0.3 %Cassino: 0.1 %Cassino: 0.1 %China: 1.1 %China: 1.1 %India: 0.0 %India: 0.0 %Taiwan, China: 0.0 %Taiwan, China: 0.0 %[]: 0.3 %[]: 0.3 %三亚: 0.0 %三亚: 0.0 %上海: 0.8 %上海: 0.8 %上海市: 0.0 %上海市: 0.0 %东营: 0.0 %东营: 0.0 %临汾: 0.0 %临汾: 0.0 %丹东: 0.0 %丹东: 0.0 %丽水: 0.0 %丽水: 0.0 %佛山: 0.1 %佛山: 0.1 %保定: 0.0 %保定: 0.0 %兰州: 0.0 %兰州: 0.0 %内江: 0.1 %内江: 0.1 %内蒙古自治区呼和浩特: 0.0 %内蒙古自治区呼和浩特: 0.0 %凤凰城: 0.0 %凤凰城: 0.0 %加利福尼亚: 0.1 %加利福尼亚: 0.1 %包头: 0.0 %包头: 0.0 %北京: 15.8 %北京: 15.8 %北京市: 0.0 %北京市: 0.0 %北海: 0.0 %北海: 0.0 %南京: 1.0 %南京: 1.0 %南昌: 0.4 %南昌: 0.4 %南通: 0.0 %南通: 0.0 %台北: 0.1 %台北: 0.1 %台州: 0.1 %台州: 0.1 %合肥: 0.1 %合肥: 0.1 %呼和浩特: 0.3 %呼和浩特: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %嘉兴: 0.0 %嘉兴: 0.0 %大连: 0.1 %大连: 0.1 %天津: 0.4 %天津: 0.4 %宁夏回族自治区银川: 0.0 %宁夏回族自治区银川: 0.0 %宁波: 0.0 %宁波: 0.0 %安康: 0.0 %安康: 0.0 %宣城: 0.0 %宣城: 0.0 %宿迁: 0.1 %宿迁: 0.1 %崇左: 0.0 %崇左: 0.0 %巴中: 0.1 %巴中: 0.1 %常州: 0.0 %常州: 0.0 %广州: 0.6 %广州: 0.6 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %张家口: 1.9 %张家口: 1.9 %张家口市: 0.0 %张家口市: 0.0 %惠州: 0.2 %惠州: 0.2 %成都: 1.3 %成都: 1.3 %扬州: 0.1 %扬州: 0.1 %新乡: 0.1 %新乡: 0.1 %无锡: 0.1 %无锡: 0.1 %昆明: 0.1 %昆明: 0.1 %晋城: 0.0 %晋城: 0.0 %杭州: 1.8 %杭州: 1.8 %武汉: 0.2 %武汉: 0.2 %汉中: 0.0 %汉中: 0.0 %汉中市: 0.0 %汉中市: 0.0 %沈阳: 0.1 %沈阳: 0.1 %济南: 0.3 %济南: 0.3 %淮南: 0.0 %淮南: 0.0 %深圳: 0.3 %深圳: 0.3 %深圳市: 0.0 %深圳市: 0.0 %温州: 0.0 %温州: 0.0 %渭南: 0.0 %渭南: 0.0 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.0 %湘潭: 0.0 %漯河: 0.2 %漯河: 0.2 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.1 %烟台: 0.1 %焦作: 0.0 %焦作: 0.0 %玉林: 0.1 %玉林: 0.1 %盐城: 0.0 %盐城: 0.0 %石家庄: 0.4 %石家庄: 0.4 %石家庄市: 0.1 %石家庄市: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国伊利诺斯芝加哥: 0.1 %美国德克萨斯沃思堡: 0.0 %美国德克萨斯沃思堡: 0.0 %芒廷维尤: 15.4 %芒廷维尤: 15.4 %芜湖: 0.0 %芜湖: 0.0 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 0.0 %苏州: 0.0 %莫斯科: 0.0 %莫斯科: 0.0 %衡水: 0.0 %衡水: 0.0 %西宁: 37.2 %西宁: 37.2 %西安: 1.0 %西安: 1.0 %贵港: 0.1 %贵港: 0.1 %贵阳: 0.1 %贵阳: 0.1 %达州: 0.0 %达州: 0.0 %运城: 0.4 %运城: 0.4 %连云港: 0.1 %连云港: 0.1 %郑州: 1.5 %郑州: 1.5 %重庆: 0.1 %重庆: 0.1 %银川: 0.1 %银川: 0.1 %长沙: 0.4 %长沙: 0.4 %阳泉: 0.1 %阳泉: 0.1 %阿什本: 0.1 %阿什本: 0.1 %青岛: 0.1 %青岛: 0.1 %香港特别行政区: 0.2 %香港特别行政区: 0.2 %驻马店: 0.0 %驻马店: 0.0 %齐齐哈尔: 0.3 %齐齐哈尔: 0.3 %其他其他CassinoChinaIndiaTaiwan, China[]三亚上海上海市东营临汾丹东丽水佛山保定兰州内江内蒙古自治区呼和浩特凤凰城加利福尼亚包头北京北京市北海南京南昌南通台北台州合肥呼和浩特哈尔滨嘉兴大连天津宁夏回族自治区银川宁波安康宣城宿迁崇左巴中常州广州库比蒂诺张家口张家口市惠州成都扬州新乡无锡昆明晋城杭州武汉汉中汉中市沈阳济南淮南深圳深圳市温州渭南湖州湘潭漯河濮阳烟台焦作玉林盐城石家庄石家庄市美国伊利诺斯芝加哥美国德克萨斯沃思堡芒廷维尤芜湖芝加哥苏州莫斯科衡水西宁西安贵港贵阳达州运城连云港郑州重庆银川长沙阳泉阿什本青岛香港特别行政区驻马店齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2404) PDF downloads(1469) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint