SONG Jiaqi and TAO Haihong. A fast parameter estimation algorithm for near-field non-circular signals[J]. Journal of Radars, 2020, 9(4): 632–639. doi: 10.12000/JR20053
Citation: Wu Qin-xia, Liang Xing-dong, Li Yan-lei, Zhou Liang-jiang. Analysis of the Residual Motion Error Impact on Airborne Multiband SAR Image Registration[J]. Journal of Radars, 2015, 4(2): 209-216. doi: 10.12000/JR14065

Analysis of the Residual Motion Error Impact on Airborne Multiband SAR Image Registration

DOI: 10.12000/JR14065
  • Received Date: 2014-04-03
  • Rev Recd Date: 2014-05-13
  • Publish Date: 2015-04-28
  • Multiband SAR is an important trend in SAR technology. Accurate registration among different band SAR images is a prerequisite for the comprehensive utilization of the information of multiband SAR images. Errors in the motion measurement system (i.e., residual motion) are major error sources affecting image registration. To solve this problem, the effect of residual motion error on SAR imaging geometry positioning is investigated. The relation between residual motion and image registration accuracy of airborne multiband SAR is analyzed quantitatively. The results of the theoretical analysis are verified by simulation experiments.

     

  • [1]
    刘向君. 多波段SAR 目标检测与图像分类融合[D]. [硕士论 文], 国防科学技术大学, 2005. Liu Xiang-jun. Decision fusion of multi-band SAR target detection and classification results[D]. [Master dissertation], National University of Defense Technology, 2005.
    [2]
    Chang Wen-ge, Li Xiang-yang, Li Yue-li, et al.. Airborne multi-frequency-band SAR system and its information processing[C]. IEEE International Conference on Information and Automation, Zhangjiajie, 2008: 1807-1811.
    [3]
    冯卫平. 多波段多极化SAR 图像配准技术研究[D]. [硕士论 文], 杭州电子科技大学, 2009. Feng Wei-ping. A Study on the techniques of the multifrequency and multipolarization SAR image registration[D]. [Master dissertation], Hangzhou Dianzi University, 2009.
    [4]
    吴一戎. 多维度合成孔径雷达成像概念[J]. 雷达学报, 2013, 2(2): 135-142. Wu Yi-rong. Concept on multidimensional space jointobservation SAR[J]. Journal of Radars, 2013, 2(2): 135-142.
    [5]
    Ruan Xiang-wei, Chen Xi, Wu Tao, et al.. Performance experiment of classification using chinese airborne multiband and multi-polar SAR data[C]. International Symposium on Image Data Fusion, Tengchong, 2011: 1-4.
    [6]
    林岳松, 冯卫平, 陈华杰. 基于尺度预估的SAR 图像相位相 关配准算法[J]. 现代雷达, 2010, 32(7): 39-44. Lin Yue-song, Feng Wei-ping, and Chen Hua-jie. A FFTbased SAR image registration algorithm via priority estimation of scale distortion[J]. Modern Radar, 2010, 32(7): 39-44.
    [7]
    常玉林. 多波段SAR 图像配准及融合算法研究[D]. [硕士论 文], 国防科学技术大学, 2004. Chang Yu-lin. A research on the algorithms of registration and fusion for multi-spectral SAR images[D]. [Master dissertation], National University of Defense Technology, 2004.
    [8]
    宋明明, 韩春明, 廖静娟. X 波段和全极化P 波段SAR 图像 配准方法研究[J]. 测绘通报, 2013, (4): 8-11. Song Ming-ming, Han Chun-ming, and Liao Jing-juan. Research on X band and fully polarimetric P band SAR image registration[J]. Bulletin of Surveying and Mapping, 2013, (4): 8-11.
    [9]
    Peterson E H, Fotopoulos G, Schmitt A, et al.. Registration of multi-frequency SAR imagery using phase correlation methods[C]. IEEE Geoscience and Remote Sensing Symposium (IGARSS), Vancouver, BC, Canada, 2011: 3708-3711.
    [10]
    Reigber A, Jager M, Fischer J, et al.. Performance of the Land P-band subsystems of the F-SAR airborne SAR instrument[C]. The European Conference on Synthetic Aperature Radar, Nuremberg, German, 2012: 286-289.
    [11]
    李焱磊. 机载差分干涉SAR 运动补偿技术研究[D]. [博士论 文], 中国科学院电子学研究所, 2013. Li Yan-lei. Research on motion compensation in airborne differential synthetic aperture radar interferometry[D].[Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2013.
    [12]
    Reigber A. Correction of residual motion errors in airborne SAR interferometry[J]. Electronics Letters, 2001, 37(17): 1083-1084.
    [13]
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出 版社, 2005: 196-198. Bao Zheng, Xing Meng-dao, and Wang Tong. Radar Imaging Technology[M]. Beijing: Publishing House of Electronics Industry, 2005: 196-198.
    [14]
    Fornaro G, Franceschetti G, and Perna S. Motion compensation errors: effects on the accuracy of airborne SAR images[J]. IEEE Transactions on Aerospace Electronic Systems, 2005, 41(4): 1338-1352.
    [15]
    句赫. 机载合成孔径雷达运动补偿研究[D]. [硕士论文], 中国 科学院电子学研究所, 2006. Ju He. Research on motion compensation of airborne SAR[D]. [Master dissertation], Institute of Electronics, Chinese Academy of Sciences, 2006.
    [16]
    郭春梅. 基于运动参量的机载SAR运动补偿研究[D]. [博士论 文], 中国科学院电子学研究所, 2008. Guo Chun-mei. Research on motion compensation based onmotion parameters for airborne SAR[D]. [Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2008.
    [17]
    Ni Chong, Wang Yan-fei, Xu Xiang-hui, et al.. SAR motion compensation based on the correction of residual attitude errors[J]. SCIENCE CHINA Physics, Mechanics Astronomy, 2011, 54(10): 1899-1905.
    [18]
    毛永飞. 机载双天线干涉SAR 误差补偿与定标技术研究[D].[博士论文], 中国科学院电子学研究所, 2012. Mao Yong-fei. Research on compensation and calibration for airborne dual-antenna interferometric SAR[D]. [Ph.D. dissertation], Institute of Electronics, Chinese Academy of Sciences, 2012.
  • Relative Articles

    [1]CHEN Yan, ZHANG Rui, LI Yadong, SONG Ruiyuan, GENG Ruixu, GONG Hanqin, WANG Binquan, ZHANG Dongheng, HU Yang. An Overview of Human Pose Estimation Based on Wireless Signals[J]. Journal of Radars, 2025, 14(1): 229-247. doi: 10.12000/JR24189
    [2]LI Nian, LIU Jie, YU Junming, ZHU Zhihao, LIU Jianguang, GUO Shisheng, CHEN Jiahui, CUI Guolong, KONG Lingjiang, YANG Xiaobo. Building Layout Tomography Method Based on Joint Multidomain Direct Wave Estimation[J]. Journal of Radars, 2025, 14(2): 309-321. doi: 10.12000/JR24220
    [3]ZHAO Xiang, WANG Wei, LI Chenyang, GUAN Jian, LI Gang. Diagnosis of Sleep Apnea Hypopnea Syndrome Using Fusion of Micro-motion Signals from Millimeter-wave Radar and Pulse Wave Data[J]. Journal of Radars, 2025, 14(1): 102-116. doi: 10.12000/JR24107
    [4]JIN Biao, SUN Kangsheng, WU Hao, LI Zixuan, ZHANG Zhenkai, CAI Yan, LI Rongmin, ZHANG Xiangqun, DU Genyuan. 3D Point Cloud from Millimeter-wave Radar for Human Action Recognition: Dataset and Method[J]. Journal of Radars, 2025, 14(1): 73-90. doi: 10.12000/JR24195
    [5]SU Hanning, PAN Jiameng, BAO Qinglong, GUO Fucheng, HU Weidong. Anti-interrupted Sampling Repeater Jamming Method in the Waveform Domain before Matched Filtering[J]. Journal of Radars, 2024, 13(1): 240-252. doi: 10.12000/JR23149
    [6]DU Lan, CHEN Xiaoyang, SHI Yu, XUE Shikun, XIE Meng. MMRGait-1.0: A Radar Time-frequency Spectrogram Dataset for Gait Recognition under Multi-view and Multi-wearing Conditions[J]. Journal of Radars, 2023, 12(4): 892-905. doi: 10.12000/JR22227
    [7]WAQI Riti, LI Gang, ZHAO Zhichun, ZE Zhenghua. Feature Selection Method of Radar-based Road Target Recognition via Histogram Analysis and Adaptive Genetics[J]. Journal of Radars, 2023, 12(5): 1014-1030. doi: 10.12000/JR22245
    [8]HUANG Yan, ZHANG Hui, LAN Lyuhongkang, DENG Kun, YANG Yang, ZHANG Ruizhe, LIU Jiang, ZHANG Yanjun, WANG Yunxuan, ZHOU Rui, XU Jun, XI Xinsuo, ZHANG Xia, ZHENG Kaihang, LIU Yuming, HONG Wei. Overview of Signal Processing Techniques for Automotive Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 923-970. doi: 10.12000/JR23119
    [9]SHU Yue, FU Dongning, CHEN Zhanye, HUANG Yan, ZHANG Yanjun, TAN Xiaoheng, TAO Jun. Super-resolution DOA Estimation Method for a Moving Target Equipped with a Millimeter-wave Radar Based on RD-ANM[J]. Journal of Radars, 2023, 12(5): 986-999. doi: 10.12000/JR23040
    [10]MA Yuxin, HAI Yu, LI Zhongyu, HUANG Peng, WANG Chaodong, WU Junjie, YANG Jianyu. 3D High-resolution Imaging Algorithm with Sparse Trajectory for Millimeter-wave Radar[J]. Journal of Radars, 2023, 12(5): 1000-1013. doi: 10.12000/JR23001
    [11]DING Jinshan, ZHONG Chao, WEN Liwu, XU Zhong. Joint Detection of Moving Target in Video Synthetic Aperture Radar[J]. Journal of Radars, 2022, 11(3): 313-323. doi: 10.12000/JR22036
    [12]YUAN Zhian, ZHOU Xiaoyu, LIU Xinpu, LU Dawei, DENG Bin, MA Yanxin. Human Fall Detection Method Using Millimeter-wave Radar Based on RDSNet[J]. Journal of Radars, 2021, 10(4): 656-664. doi: 10.12000/JR21015
    [13]DANG Xiangwei, QIN Fei, BU Xiangxi, LIANG Xingdong. A Robust Perception Algorithm Based on a Radar and LiDAR for Intelligent Driving[J]. Journal of Radars, 2021, 10(4): 622-631. doi: 10.12000/JR21036
    [14]Xie Pengfei, Zhang Lei, Wu Zhenhua. A Three-dimensional Imaging Algorithm Fusion with ω-K and BP Algorithm for Millimeter-wave Cylindrical Scanning[J]. Journal of Radars, 2018, 7(3): 387-394. doi: 10.12000/JR17112
    [15]Zhao Jun, Tian Bin, Zhu Daiyin. Adaptive Angle-Doppler Compensation Method for Airborne Bistatic Radar Based on PAST[J]. Journal of Radars, 2017, 6(6): 594-601. doi: 10.12000/JR17053
    [16]Ding Zhen-yu, Tan Wei-xian, Wang Yan-ping, Hong Wen, Wu Yi-rong. Yaw Angle Error Compensation for Airborne 3-D SAR Based on Wavenumber-domain Subblock[J]. Journal of Radars, 2015, 4(4): 467-473. doi: 10.12000/JR15016
    [17]Guo Zhen-yu, Lin Yun, Hong Wen. A Focusing Algorithm for Circular SAR Based on Phase Error Estimation in Image Domain[J]. Journal of Radars, 2015, 4(6): 681-688. doi: 10.12000/JR15046
    [18]Zhe Xiao-qiang, Chou Xiao-lan, Han Bing, Lei Bin. An Improved Doppler Rate Estimation Approach for Sliding Spotlight SAR Data Based on the Transposition Domain[J]. Journal of Radars, 2014, 3(4): 419-427. doi: 10.3724/SP.J.1300.2014.14008
    [19]Liu Hai-bo, Sheng Meng-meng, Yang Xiao-qian. A Study of MMW Collision Avoidance Radar System for Trains[J]. Journal of Radars, 2013, 2(2): 234-238. doi: 10.3724/SP.J.1300.2013.20091
    [20]Qiao Ming, Pan Zhou-hao, Liu Bo, Li Dao-jing. Analysis and Compensation Method Research on the Channel Leakage Error for Three-baseline MMWInSAR[J]. Journal of Radars, 2013, 2(1): 68-76. doi: 10.3724/SP.J.1300.2013.13008
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 36.1 %FULLTEXT: 36.1 %META: 48.9 %META: 48.9 %PDF: 14.9 %PDF: 14.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.8 %其他: 4.8 %其他: 1.8 %其他: 1.8 %Absecon: 0.1 %Absecon: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 0.6 %China: 0.6 %Halfweg: 0.1 %Halfweg: 0.1 %Herndon: 0.1 %Herndon: 0.1 %[]: 0.2 %[]: 0.2 %三亚: 0.1 %三亚: 0.1 %上海: 4.6 %上海: 4.6 %东京: 0.4 %东京: 0.4 %东京都: 0.1 %东京都: 0.1 %东莞: 0.2 %东莞: 0.2 %东营: 0.2 %东营: 0.2 %丹东: 0.1 %丹东: 0.1 %亳州: 0.1 %亳州: 0.1 %仙桃: 0.1 %仙桃: 0.1 %伦敦: 0.2 %伦敦: 0.2 %佛山: 0.6 %佛山: 0.6 %兰州: 0.2 %兰州: 0.2 %兰辛: 0.1 %兰辛: 0.1 %内江: 0.4 %内江: 0.4 %利斯本: 0.2 %利斯本: 0.2 %加利福尼亚州: 0.2 %加利福尼亚州: 0.2 %包头: 0.1 %包头: 0.1 %北京: 9.3 %北京: 9.3 %十堰: 0.1 %十堰: 0.1 %南京: 5.8 %南京: 5.8 %南充: 0.1 %南充: 0.1 %南平: 0.1 %南平: 0.1 %南昌: 0.1 %南昌: 0.1 %南通: 0.2 %南通: 0.2 %卡拉奇: 0.1 %卡拉奇: 0.1 %卡梅尔: 0.3 %卡梅尔: 0.3 %印多尔: 0.2 %印多尔: 0.2 %厦门: 0.5 %厦门: 0.5 %台北: 0.2 %台北: 0.2 %台州: 0.2 %台州: 0.2 %合肥: 1.7 %合肥: 1.7 %吉林: 0.1 %吉林: 0.1 %呼和浩特: 0.2 %呼和浩特: 0.2 %咸宁: 0.2 %咸宁: 0.2 %哈尔滨: 0.7 %哈尔滨: 0.7 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.3 %唐山: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %大连: 0.2 %大连: 0.2 %天津: 0.7 %天津: 0.7 %太原: 0.2 %太原: 0.2 %威海: 0.5 %威海: 0.5 %娄底: 0.1 %娄底: 0.1 %宁波: 0.3 %宁波: 0.3 %安庆: 0.1 %安庆: 0.1 %安康: 0.3 %安康: 0.3 %宜宾: 0.2 %宜宾: 0.2 %宣城: 0.5 %宣城: 0.5 %密蘇里城: 0.2 %密蘇里城: 0.2 %巴中: 0.1 %巴中: 0.1 %布鲁塞尔: 0.1 %布鲁塞尔: 0.1 %常州: 0.5 %常州: 0.5 %常德: 0.2 %常德: 0.2 %平顶山: 0.1 %平顶山: 0.1 %广州: 2.1 %广州: 2.1 %庆阳: 0.2 %庆阳: 0.2 %库比蒂诺: 0.2 %库比蒂诺: 0.2 %廊坊: 0.1 %廊坊: 0.1 %开封: 0.5 %开封: 0.5 %张家口: 1.2 %张家口: 1.2 %张家界: 0.2 %张家界: 0.2 %徐州: 0.4 %徐州: 0.4 %惠州: 0.2 %惠州: 0.2 %慕尼黑: 0.2 %慕尼黑: 0.2 %成都: 4.8 %成都: 4.8 %扬州: 0.2 %扬州: 0.2 %揭阳: 0.1 %揭阳: 0.1 %新乡: 0.1 %新乡: 0.1 %新竹: 0.3 %新竹: 0.3 %无锡: 0.2 %无锡: 0.2 %昆明: 1.9 %昆明: 1.9 %晋城: 0.1 %晋城: 0.1 %普林斯顿: 0.1 %普林斯顿: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.1 %杭州: 3.1 %格兰特县: 0.2 %格兰特县: 0.2 %桂林: 0.4 %桂林: 0.4 %武威: 0.1 %武威: 0.1 %武汉: 0.6 %武汉: 0.6 %汕头: 0.1 %汕头: 0.1 %江门: 0.1 %江门: 0.1 %沈阳: 0.2 %沈阳: 0.2 %泰安: 0.2 %泰安: 0.2 %泰州: 0.1 %泰州: 0.1 %泸州: 0.1 %泸州: 0.1 %洛杉矶: 0.1 %洛杉矶: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.4 %济南: 0.4 %海口: 0.1 %海口: 0.1 %淄博: 0.1 %淄博: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 2.5 %深圳: 2.5 %清远: 0.3 %清远: 0.3 %温州: 0.1 %温州: 0.1 %渭南: 0.1 %渭南: 0.1 %湖州: 0.1 %湖州: 0.1 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.1 %湛江: 0.1 %漯河: 1.0 %漯河: 1.0 %烟台: 0.1 %烟台: 0.1 %白城: 0.1 %白城: 0.1 %石家庄: 0.4 %石家庄: 0.4 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %米兰: 0.1 %米兰: 0.1 %纽约: 0.2 %纽约: 0.2 %绍兴: 0.7 %绍兴: 0.7 %绵阳: 0.1 %绵阳: 0.1 %罗马: 0.1 %罗马: 0.1 %自贡: 0.3 %自贡: 0.3 %芒廷维尤: 16.4 %芒廷维尤: 16.4 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.6 %苏州: 0.6 %茂名: 0.1 %茂名: 0.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡阳: 0.3 %衡阳: 0.3 %襄阳: 0.1 %襄阳: 0.1 %西宁: 7.1 %西宁: 7.1 %西安: 3.4 %西安: 3.4 %西雅图: 0.1 %西雅图: 0.1 %贵阳: 0.3 %贵阳: 0.3 %费利蒙: 0.3 %费利蒙: 0.3 %运城: 0.5 %运城: 0.5 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 0.8 %郑州: 0.8 %重庆: 1.2 %重庆: 1.2 %金昌: 0.1 %金昌: 0.1 %长春: 0.1 %长春: 0.1 %长沙: 2.4 %长沙: 2.4 %阿姆斯特丹: 0.1 %阿姆斯特丹: 0.1 %青岛: 0.5 %青岛: 0.5 %首尔特别: 0.4 %首尔特别: 0.4 %香港: 0.1 %香港: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.1 %黄石: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他AbseconCentral DistrictChinaHalfwegHerndon[]三亚上海东京东京都东莞东营丹东亳州仙桃伦敦佛山兰州兰辛内江利斯本加利福尼亚州包头北京十堰南京南充南平南昌南通卡拉奇卡梅尔印多尔厦门台北台州合肥吉林呼和浩特咸宁哈尔滨哥伦布唐山嘉兴大连天津太原威海娄底宁波安庆安康宜宾宣城密蘇里城巴中布鲁塞尔常州常德平顶山广州庆阳库比蒂诺廊坊开封张家口张家界徐州惠州慕尼黑成都扬州揭阳新乡新竹无锡昆明晋城普林斯顿朝阳杭州格兰特县桂林武威武汉汕头江门沈阳泰安泰州泸州洛杉矶洛阳济南海口淄博淮南深圳清远温州渭南湖州湘潭湛江漯河烟台白城石家庄福州秦皇岛米兰纽约绍兴绵阳罗马自贡芒廷维尤芝加哥苏州茂名葫芦岛蚌埠衡阳襄阳西宁西安西雅图贵阳费利蒙运城邯郸邵阳郑州重庆金昌长春长沙阿姆斯特丹青岛首尔特别香港黄冈黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(2862) PDF downloads(1258) Cited by(1)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint