Turn off MathJax
Article Contents
CHEN Hongmeng, HUA Yuming, YU Hanchen, et al. Boundary analysis and fast imaging arc selection experimental demonstration for bi-isar imaging with bistatic angle derivative constraint[J]. Journal of Radars, 2025, 14(5): 1170–1195. doi: 10.12000/JR25093
Citation: CHEN Hongmeng, HUA Yuming, YU Hanchen, et al. Boundary analysis and fast imaging arc selection experimental demonstration for bi-isar imaging with bistatic angle derivative constraint[J]. Journal of Radars, 2025, 14(5): 1170–1195. doi: 10.12000/JR25093

Boundary Analysis and Fast Imaging Arc Selection Experimental Demonstration for Bi-ISAR Imaging with Bistatic Angle Derivative Constraint

DOI: 10.12000/JR25093 CSTR: 32380.14.JR25093
More Information
  • Bistatic Inverse Synthetic Aperture Radar (Bi-ISAR) imaging has a broad application in air and space target detection and recognition. However, due to the complexity and variability of the bistatic configuration, the Bi-ISAR imaging performance under different observation configurations varies greatly. There may even be imaging arcs under some observation configurations in which the two-dimensional imaging results cannot be acquired. Therefore, it is quite essential to find out the useful Bi-ISAR imaging arcs quickly and accurately. Aiming at the need of fast and optimal selection of imaging boundary and imaging arcs for aerial moving targets, a boundary analysis and fast imaging arc selection method for Bi-ISAR imaging with bistatic angle derivative constraint is proposed. Firstly, the Bi-ISAR imaging model of moving target is constructed, and the expression of bistatic slant range history related to the bistatic angle derivative is derived. Then, the boundary of the Bi-ISAR imaging performance is theoretically analyzed from the dimensions of Range Cell Migration (RCM) and Azimuth-Quadratic Phase (AQP), and the corresponding constraints are figured out. Finally, based on the minimum fusion criterion, the Bi-ISAR imaging boundary constrained by the bistatic angle derivative is presented. Moreover, it is proved that the boundary constraint of the bistatic angle derivative is equivalent to the selection of the Bi-ISAR imaging arc. The processing results of both simulation data and measured data verify the effectiveness of the proposed method.

     

  • loading
  • [1]
    SKOLNIK M I. Radar Handbook[M]. 3rd ed. New York: McGraw-Hill, 2008: 23.1–23.36.
    [2]
    RICHARDS M A. Fundamentals of Radar Signal Processing[M]. New York: McGraw-Hill, 2005.1-38.
    [3]
    WANG R and DENG Yunkai. Bistatic SAR System and Signal Processing Technology[M]. Singapore: Springer, 2018. doi: 10.1007/978-981-10-3078-9.1-40.
    [4]
    CUOMO K M, COUTTS S D, MCHARG J C, et al. Wideband aperture coherence processing for next generation radar (NexGen)[R]. MIT Lincoln Laboratory Report NG-3, 2004.
    [5]
    鲁耀兵, 高红卫. 分布孔径雷达[M]. 北京: 国防工业出版社, 2017: 216–217.

    LU Yaobing and GAO Hongwei. Distributed Aperture Radar[M]. Beijing: National Defense Industry Press, 2017: 216–217.
    [6]
    刘泉华, 张凯翔, 梁振楠, 等. 地基分布式相参雷达技术研究综述[J]. 信号处理, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001.

    LIU Quanhua, ZHANG Kaixiang, LIANG Zhennan, et al. Research overview of ground-based distributed coherent aperture radar[J]. Journal of Signal Processing, 2022, 38(12): 2443–2459. doi: 10.16798/j.issn.1003-0530.2022.12.001.
    [7]
    王元昊, 王宏强, 杨琪. 动平台分布孔径雷达相参合成探测方法与试验验证[J]. 雷达学报(中英文), 2024, 13(6): 1279–1297. doi: 10.12000/JR24141.

    WANG Yuanhao, WANG Hongqiang, and YANG Qi. Coherent detection method for moving platform based distributed aperture radar and experimental verification[J]. Journal of Radars, 2024, 13(6): 1279–1297. doi: 10.12000/JR24141.
    [8]
    保铮, 邢孟道, 王彤. 雷达成像技术[M]. 北京: 电子工业出版社, 2005.

    BAO Zheng, XING Mengdao, and WANG Tong. Radar Imaging Technique[M]. Beijing: Publishing House of Electronics Industry, 2005.
    [9]
    杨建宇. 双基合成孔径雷达[M]. 北京: 国防工业出版社, 2017.

    YANG Jianyu. Bistatic Synthetic Aperture Radar[M]. Beijing: National Defense Industry Press, 2017.
    [10]
    曾涛. 双基地合成孔径雷达发展现状与趋势分析[J]. 雷达学报, 2012, 1(4): 329–341. doi: 10.3724/SP.J.1300.2012.20093.

    ZENG Tao. Bistatic SAR: State of the art and development trend[J]. Journal of Radars, 2012, 1(4): 329–341. doi: 10.3724/SP.J.1300.2012.20093.
    [11]
    邢孟道, 林浩, 陈溅来, 等. 多平台合成孔径雷达成像算法综述[J]. 雷达学报, 2019, 8(6): 732–757. doi: 10.12000/JR19102.

    XING Mengdao, LIN Hao, CHEN Jianlai, et al. A review of imaging algorithms in multi-platform-borne synthetic aperture radar[J]. Journal of Radars, 2019, 8(6): 732–757. doi: 10.12000/JR19102.
    [12]
    ZENG Tao, WANG Rui, LI Feng, et al. A modified nonlinear chirp scaling algorithm for spaceborne/stationary bistatic SAR based on series reversion[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5): 3108–3118. doi: 10.1109/TGRS.2012.2219057.
    [13]
    WANG R, WANG Wei, SHAO Yunfeng, et al. First bistatic demonstration of digital beamforming in elevation with TerraSAR-X as an illuminator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(2): 842–849. doi: 10.1109/TGRS.2015.2467176.
    [14]
    SHI Tianyue, MAO Xinhua, JAKOBSSON A, et al. Efficient BiSAR PFA wavefront curvature compensation for arbitrary radar flight trajectories[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5221514. doi: 10.1109/TGRS.2023.3332759.
    [15]
    WU Junjie, LI Zhongyu, HUANG Yulin, et al. Focusing bistatic forward-looking SAR with stationary transmitter based on Keystone transform and nonlinear chirp scaling[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(1): 148–152. doi: 10.1109/LGRS.2013.2250904.
    [16]
    PU Wei, WU Junjie, HUANG Yulin, et al. Fast factorized backprojection imaging algorithm integrated with motion trajectory estimation for bistatic forward-looking SAR[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2019, 12(10): 3949–3965. doi: 10.1109/JSTARS.2019.2945118.
    [17]
    LI Yachao, ZHANG Tinghao, MEI Haiwen, et al. Focusing translational-variant bistatic forward- looking SAR data using the modified omega-K algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5203916. doi: 10.1109/TGRS.2021.3063780.
    [18]
    武俊杰, 孙稚超, 吕争, 等. 星源照射双/多基地SAR成像[J]. 雷达学报, 2023, 12(1): 13–35. doi: 10.12000/JR22213.

    WU Junjie, SUN Zhichao, LV Zheng, et al. Bi/multi-static synthetic aperture radar using spaceborne illuminator[J]. Journal of Radars, 2023, 12(1): 13–35. doi: 10.12000/JR22213.
    [19]
    LI Wenchao, WANG Lei, LIU Dan, et al. Raw data simulation under undulating terrain for bistatic SAR with arbitrary configuration[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 12878–12892. doi: 10.1109/JSTARS.2024.3427704.
    [20]
    SUN Zhichao, SUN Huarui, AN Hongyang, et al. Trajectory optimization for maneuvering platform bistatic SAR with geosynchronous illuminator[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5203715. doi: 10.1109/TGRS.2024.3358303.
    [21]
    RODRIGUES-SILVA E, RODRIGUEZ-CASSOLA M, KRIEGER G, et al. GNSS-based phase synchronization for bistatic and multistatic synthetic aperture radar[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5213614. doi: 10.1109/TGRS.2024.3406797.
    [22]
    TANG Tao, WANG Pengbo, ZENG Hongcheng, et al. An efficient coarse-to-fine doppler parameter search method for moving target detection using GNSS-based passive bistatic radar[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 3509105. doi: 10.1109/LGRS.2024.3450209.
    [23]
    FAN Lei, WANG Hongqiang, YANG Qi, et al. High-quality airborne terahertz video SAR imaging based on echo-driven robust motion compensation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 2001817. doi: 10.1109/TGRS.2024.3357697.
    [24]
    ZHANG Tinghao, LI Yachao, YUAN Mingze, et al. Focusing highly squinted FMCW-SAR data using the modified wavenumber-domain algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 1999–2011. doi: 10.1109/JSTARS.2023.3266886.
    [25]
    FAN Lei, WANG Hongqiang, YANG Qi, et al. THz-ViSAR-oriented fast indication and imaging of rotating targets based on nonparametric method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5217515. doi: 10.1109/TGRS.2024.3427653.
    [26]
    ZHANG Lei, DUAN Jia, QIAO Zhijun, et al. Phase adjustment and ISAR imaging of maneuvering targets with sparse apertures[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1955–1973. doi: 10.1109/TAES.2013.130115.
    [27]
    田彪, 刘洋, 呼鹏江, 等. 宽带逆合成孔径雷达高分辨成像技术综述[J]. 雷达学报, 2020, 9(5): 765–802. doi: 10.12000/JR20060.

    TIAN Biao, LIU Yang, HU Pengjiang, et al. Review of high-resolution imaging techniques of wideband inverse synthetic aperture radar[J]. Journal of Radars, 2020, 9(5): 765–802. doi: 10.12000/JR20060.
    [28]
    FU Jixiang, XING Mengdao, and AMIN M G. ISAR imaging motion compensation in low SNR environments using phase gradient and filtering techniques[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4296–4312. doi: 10.1109/TAES.2021.3098129.
    [29]
    MAI Yanbo, ZHANG Shuanghui, JIANG Weidong, et al. ISAR imaging of targets exhibiting micro-motion under the joint constraints of low SNR and sparse rate[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(5): 6233–6249. doi: 10.1109/TAES.2023.3273203.
    [30]
    CHEN V C, DES ROSIERS A, and LIPPS R. Bi-static ISAR range-Doppler imaging and resolution analysis[C]. 2009 IEEE Radar Conference, Pasadena, USA, 2009: 1–5. doi: 10.1109/RADAR.2009.4977060.
    [31]
    MARTORELLA M. Analysis of the robustness of bistatic inverse synthetic aperture radar in the presence of phase synchronisation errors[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(4): 2673–2689. doi: 10.1109/TAES.2011.6034658.
    [32]
    MARTORELLA M, CATALDO D, and BRISKEN S. Bistatically equivalent monostatic approximation for bistatic ISAR[C]. 2013 IEEE Radar Conference (RadarCon13), Ottawa, Canada, 2013: 1–5. doi: 10.1109/RADAR.2013.6586074.
    [33]
    KANG B S, BAE J H, KANG M S, et al. Bistatic-ISAR cross-range scaling[J]. IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(4): 1962–1973. doi: 10.1109/TAES.2017.2677798.
    [34]
    DING Jiabao, LI Yachao, WANG Jiadong, et al. Joint motion compensation and distortion correction for maneuvering target bistatic ISAR imaging based on parametric minimum entropy optimization[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5118919. doi: 10.1109/TGRS.2022.3213579.
    [35]
    SHI Hongyin, YANG Zixin, YANG Ting, et al. Bistatic ISAR imaging for maneuvering target with complex motion based on phase retrieval-assisted ICBA[J]. IEEE Sensors Journal, 2025, 25(10): 17434–17446. doi: 10.1109/JSEN.2025.3549833.
    [36]
    DING Jiabao, LI Yachao, WANG Jiadong, et al. Integration of high-order motion compensation and 2-D scaling for maneuvering target bistatic ISAR imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2025, 60: 5205120. doi: 10.1109/TGRS.2025.3533881.
    [37]
    朱瀚神, 胡文华, 郭宝锋, 等. 双基地ISAR稀疏孔径机动目标MTRC补偿成像算法[J]. 系统工程与电子技术, 2023, 45(7): 2022–2030. doi: 10.12305/j.issn.1001-506X.2023.07.12.

    ZHU Hanshen, HU Wenhua, GUO Baofeng, et al. Bistatic ISAR sparse aperture maneuvering target MTRC compensation imaging algorithm[J]. Systems Engineering and Electronics, 2023, 45(7): 2022–2030. doi: 10.12305/j.issn.1001-506X.2023.07.12.
    [38]
    ZHANG Shuanghui, LIU Yongxiang, and LI Xiang. Bayesian bistatic ISAR imaging for targets with complex motion under low SNR condition[J]. IEEE Transactions on Image Processing, 2018, 27(5): 2447–2460. doi: 10.1109/TIP.2018.2803300.
    [39]
    符吉祥, 张超, 邢文洁, 等. 基于修正牛顿法的双基ISAR空变补偿快速成像与几何校正图像定标方法[J]. 雷达学报(中英文) 待出版. doi: 10.12000/JR25052.

    FU Jixiang, ZHANG Chao, XING Wenjie, et al. Fast space-variant phase error compensation and geometric correction for bistatic ISAR imaging using a modified newton’s method[J]. Journal of Radars. doi: 10.12000/JR25052.
    [40]
    LI Zhongyu, ZHANG Xiaodong, YANG Qing, et al. Hybrid SAR-ISAR image formation via joint FrFT-WVD processing for BFSAR ship target high-resolution imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5215713. doi: 10.1109/TGRS.2021.3117280.
    [41]
    QIAN Guangzhao and WANG Yong. Monostatic-equivalent algorithm via taylor expansion for BiSAR ship target imaging[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5200919. doi: 10.1109/TGRS.2022.3233384.
    [42]
    CHEN Hongmeng, LI Jun, ZHOU Rui, et al. Optimal Bi-ISAR imaging arc selection method with bistatic angle derivative constraint[C]. 2024 IEEE International Conference on Signal, Information and Data Processing (ICSIDP), Zhuhai, China, 2024: 1–4. doi: 10.1109/ICSIDP62679.2024.10869106.
    [43]
    CHEN V C and QIAN Shi’e. Joint time-frequency transform for radar range-Doppler imaging[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(2): 486–499. doi: 10.1109/7.670330.
    [44]
    汪玲, 朱兆达, 朱岱寅. 机载ISAR舰船侧视和俯视成像时间段选择[J]. 电子与信息学报, 2008, 30(12): 2835–2839. doi: 10.3724/SP.J.1146.2007.00919.

    WANG Ling, ZHU Zhaoda, and ZHU Daiyin. Interval selections for side-view or top-view imaging of ship targets with airborne ISAR[J]. Journal of Electronics & Information Technology, 2008, 30(12): 2835–2839. doi: 10.3724/SP.J.1146.2007.00919.
    [45]
    LI Ning, SHEN Qingyuan, WANG Ling, et al. Optimal time selection for ISAR imaging of ship targets based on time-frequency analysis of multiple scatterers[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 4017505. doi: 10.1109/LGRS.2021.3103915.
    [46]
    CAO Rui, WANG Yong, ZHANG Yun, et al. Optimal time selection for ISAR imaging of ship target via novel approach of centerline extraction with RANSAC algorithm[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15: 9987–10005. doi: 10.1109/JSTARS.2022.3220496.
    [47]
    SHAO Shuai, ZHANG Lei, and LIU Hongwei. An optimal imaging time interval selection technique for marine targets ISAR imaging based on sea dynamic prior information[J]. IEEE Sensors Journal, 2019, 19(13): 4940–4953. doi: 10.1109/JSEN.2019.2903399.
    [48]
    王雅慧, 杨青, 李中余, 等. 双基SAR舰船目标成像时段寻优成像处理方法[J]. 雷达学报(中英文) 待出版. doi: 10.12000/JR24193.

    WANG Yahui, YANG Qing, LI Zhongyu, et al. Imaging time optimization method for ship targets of bistatic SAR[J]. Journal of Radars. doi: 10.12000/JR24193.
    [49]
    JIANG Yicheng, WEI Jin, and LIU Zitao. Bistatic ISAR imaging and scaling algorithm based on the estimation of bistatic factor and effective rotation velocity[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(6): 8522–8538. doi: 10.1109/TAES.2024.3432109.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(20) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint