Volume 13 Issue 6
Dec.  2024
Turn off MathJax
Article Contents
ZHANG Xuqi, ZHOU Bin, LIU Haiqi, et al. A scalable method for group target tracking using multisensor with limited field of views[J]. Journal of Radars, 2024, 13(6): 1220–1238. doi: 10.12000/JR24054
Citation: ZHANG Xuqi, ZHOU Bin, LIU Haiqi, et al. A scalable method for group target tracking using multisensor with limited field of views[J]. Journal of Radars, 2024, 13(6): 1220–1238. doi: 10.12000/JR24054

A Scalable Method for Group Target Tracking Using Multisensor with Limited Field of Views

DOI: 10.12000/JR24054
Funds:  The National Ministries Foundation
More Information
  • Corresponding author: ZHANG Xuqi, 502671142@qq.com
  • Received Date: 2024-03-29
  • Rev Recd Date: 2024-05-25
  • Available Online: 2024-06-05
  • Publish Date: 2024-06-27
  • In practical applications, the field of view and computation resources of an individual sensor are limited, and the development and application of multisensor networks provide more possibilities for solving challenging target tracking problems. Compared with multitarget tracking, group target tracking encounters more challenging data association and computation problems due to factors such as the proximity of targets within groups, coordinated motions, a large number of involved targets, and group splitting and merging, which will be further complicated in the multisensor fusion systems. For group target trackingunder sensors with limited field of view, we propose a scalable multisensor group target tracking method via belief propagation. Within the Bayesian framework, the method considers the uncertainty of the group structure, constructs the decomposition of the joint posterior probability density of the multisensor group targets and corresponding factor graph, and efficiently solves the data association problem by running belief propagation on the devised factor graph. Furthermore, the method has excellent scalability and low computational complexity, scaling linearly only on the numbers of sensors, preserved group partitions, and sensor measurements, and scaling quadratically on the number of targets. Finally, simulation experiments compare the performance of different methods on GOSPA and OSPA(2), which verify that the proposed method can seamlessly track grouped and ungrouped targets, fully utilize the complementary information among sensors, and improve tracking accuracy.

     

  • loading
  • [1]
    BAR-SHALOM Y, WILLETT P K, and TIAN Xin. Tracking and Data Fusion: A Handbook of Algorithms[M]. Storrs: YBS Publishing, 2011.
    [2]
    BLACKMAN S and POPOLI R. Design and Analysis of Modern Tracking Systems[M]. Boston: Artech House, 1999.
    [3]
    李继广, 陈欣, 董彦非, 等. 基于协同滤波轨迹预测的机动目标RTPN拦截制导律[J]. 北京航空航天大学学报, 2024, 50(1): 86–96. doi: 10.13700/j.bh.1001-5965.2022.0211.

    LI Jiguang, CHEN Xin, DONG Yanfei, et al. RTPN interception guidance law for maneuvering target based on collaborative filtering trajectory prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(1): 86–96. doi: 10.13700/j.bh.1001-5965.2022.0211.
    [4]
    曾雅俊, 王俊, 魏少明, 等. 分布式多传感器多目标跟踪方法综述[J]. 雷达学报, 2023, 12(1): 197–213. doi: 10.12000/JR22111.

    ZENG Yajun, WANG Jun, WEI Shaoming, et al. Review of the method for distributed multi-sensor multi-target tracking[J]. Journal of Radars, 2023, 12(1): 197–213. doi: 10.12000/JR22111.
    [5]
    孟琭, 杨旭. 目标跟踪算法综述[J]. 自动化学报, 2019, 45(7): 1244–1260. doi: 10.16383/j.aas.c180277.

    MENG Lu and YANG Xu. A survey of object tracking algorithms[J]. Acta Automatica Sinica, 2019, 45(7): 1244–1260. doi: 10.16383/j.aas.c180277.
    [6]
    HOSEINNEZHAD R, VO B N, VO B T, et al. Visual tracking of numerous targets via multi-Bernoulli filtering of image data[J]. Pattern Recognition, 2012, 45(10): 3625–3635. doi: 10.1016/j.patcog.2012.04.004.
    [7]
    VO B N, MALLICK M, BAR-SHALOM Y, et al. Multitarget tracking[J]. Wiley Encyclopedia of Electrical and Electronics Engineering, 2015. doi: 10.1002/047134608X.W8275.
    [8]
    SINGER R A and STEIN J J. An optimal tracking filter for processing sensor data of imprecisely determined origin in surveillance systems[C]. 1971 IEEE Conference on Decision and Control, Miami Beach, USA, 1971: 171–175. doi: 10.1109/CDC.1971.270971.
    [9]
    REID D. An algorithm for tracking multiple targets[J]. IEEE Transactions on Automatic Control, 1979, 24(6): 843–854. doi: 10.1109/TAC.1979.1102177.
    [10]
    MAHLER R P S. Statistical Multisource-Multitarget Information Fusion[M]. Boston: Artech House, 2007.
    [11]
    WILLIAMS J L and LAU R A. Convergence of loopy belief propagation for data association[C]. The Sixth International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Brisbane, Australia, 2010: 175–180. doi: 10.1109/ISSNIP.2010.5706750.
    [12]
    MEYER F, KROPFREITER T, WILLIAMS J L, et al. Message passing algorithms for scalable multitarget tracking[J]. Proceedings of the IEEE, 2018, 106(2): 221–259. doi: 10.1109/JPROC.2018.2789427.
    [13]
    GAGLIONE D, BRACA P, SOLDI G, et al. Fusion of sensor measurements and target-provided information in multitarget tracking[J]. IEEE Transactions on Signal Processing, 2022, 70: 322–336. doi: 10.1109/TSP.2021.3132232.
    [14]
    LAN Hua, MA Jirong, WANG Zengfu, et al. A message passing approach for multiple maneuvering target tracking[J]. Signal Processing, 2020, 174: 107621. doi: 10.1016/j.sigpro.2020.107621.
    [15]
    SUN Mengwei, DAVIES M E, PROUDLER I K, et al. Adaptive kernel Kalman filter based belief propagation algorithm for maneuvering multi-target tracking[J]. IEEE Signal Processing Letters, 2022, 29: 1452–1456. doi: 10.1109/LSP.2022.3184534.
    [16]
    SHARMA P, SAUCAN A A, BUCCI D J, et al. Decentralized Gaussian filters for cooperative self-localization and multi-target tracking[J]. IEEE Transactions on Signal Processing, 2019, 67(22): 5896–5911. doi: 10.1109/TSP.2019.2946017.
    [17]
    CORMACK D and HOPGOOD J R. Message passing and hierarchical models for simultaneous tracking and registration[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1524–1537. doi: 10.1109/TAES.2020.3046090.
    [18]
    KROPFREITER T, MEYER F, and HLAWATSCH F. A fast labeled multi-Bernoulli filter using belief propagation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(3): 2478–2488. doi: 10.1109/TAES.2019.2941104.
    [19]
    LIANG Mingchao and MEYER F. Neural enhanced belief propagation for multiobject tracking[J]. IEEE Transactions on Signal Processing, 2024, 72: 15–30. doi: 10.1109/TSP.2023.3314275.
    [20]
    LAU R A and WILLIAMS J L. Tracking a coordinated group using expectation maximisation[C]. The Eighth IEEE International Conference on Intelligent Sensors, Sensor Networks and Information Processing, Melbourne, Australia, 2013: 282–287. doi: 10.1109/ISSNIP.2013.6529803.
    [21]
    ZHANG Xuqi, MENG Fanqin, LIU Haiqi, et al. Seamless tracking of group targets and ungrouped targets using belief propagation[EB/OL]. https://arxiv.org/abs/2208.12035, 2022.
    [22]
    GADALETA S, POORE A B, ROBERTS S, et al. Multiple hypothesis clustering and multiple frame assignment tracking[C]. SPIE 5428, Signal and Data Processing of Small Targets, Orlando, USA, 2004: 294–307. doi: 10.1117/12.542213.
    [23]
    ZHANG Xuqi, LIU Haiqi, MENG Fanqin, et al. Group target tracking via jointly optimizing group partition and association[J]. Automatica, 2023, 153: 111013. doi: 10.1016/J.AUTOMATICA.2023.111013.
    [24]
    MIHAYLOVA L, CARMI A Y, SEPTIER F, et al. Overview of Bayesian sequential Monte Carlo methods for group and extended object tracking[J]. Digital Signal Processing, 2014, 25: 1–16. doi: 10.1016/j.dsp.2013.11.006.
    [25]
    POORE A B. Multidimensional assignment formulation of data association problems arising from multitarget and multisensor tracking[J]. Computational Optimization and Applications, 1994, 3(1): 27–57. doi: 10.1007/BF01299390.
    [26]
    GNING A, MIHAYLOVA L, MASKELL S, et al. Group object structure and state estimation with evolving networks and Monte Carlo methods[J]. IEEE Transactions on Signal Processing, 2011, 59(4): 1383–1396. doi: 10.1109/TSP.2010.2103062.
    [27]
    LU Zhejun, HU Weidong, LIU Yongxiang, et al. Seamless group target tracking using random finite sets[J]. Signal Processing, 2020, 176: 107683. doi: 10.1016/j.sigpro.2020.107683.
    [28]
    PANG S K, LI J, and GODSILL S J. Detection and tracking of coordinated groups[J]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47(1): 472–502. doi: 10.1109/TAES.2011.5705687.
    [29]
    LI Qing and GODSILL S. A new leader-follower model for Bayesian tracking[C]. The 23rd IEEE International Conference on Information Fusion (FUSION), Rustenburg, South Africa, 2020: 1–7. doi: 10.23919/FUSION45008.2020.9190329.
    [30]
    易伟, 袁野, 刘光宏, 等. 多雷达协同探测技术研究进展: 认知跟踪与资源调度算法[J]. 雷达学报, 2023, 12(3): 471–499. doi: 10.12000/JR23036.

    YI Wei, YUAN Ye, LIU Guanghong, et al. Recent advances in multi-radar collaborative surveillance: Cognitive tracking and resource scheduling algorithms[J]. Journal of Radars, 2023, 12(3): 471–499. doi: 10.12000/JR23036.
    [31]
    齐崇英, 贺峰, 陈超. 多雷达组网与协同探测关键技术研究[J]. 指挥控制与仿真, 2023, 45(6): 42–46. doi: 10.3969/j.issn.1673-3819.2023.06.007.

    QI Chongying, HE Feng, and CHEN Chao. Research on key technology of multi-radar network and cooperative detection[J]. Command Control & Simulation, 2023, 45(6): 42–46. doi: 10.3969/j.issn.1673-3819.2023.06.007.
    [32]
    李劲东. 中国高分辨率对地观测卫星遥感技术进展[J]. 前瞻科技, 2022, 1(1): 112–125. doi: 10.3981/j.issn.2097-0781.2022.01.010.

    LI Jindong. Advances in high-resolution earth observation satellite remote sensing technologies in China[J]. Science and Technology Foresight, 2022, 1(1): 112–125. doi: 10.3981/j.issn.2097-0781.2022.01.010.
    [33]
    PAO L Y and TRAILOVIC L. The optimal order of processing sensor information in sequential multisensor fusion algorithms[J]. IEEE Transactions on Automatic Control, 2000, 45(8): 1532–1536. doi: 10.1109/9.871766.
    [34]
    WANG Yang, JING Zhongliang, HU Shiqiang, et al. On the sensor order in sequential integrated probability data association filter[J]. Science China Information Sciences, 2012, 55(3): 491–500. doi: 10.1007/s11432-011-4542-y.
    [35]
    LIU Long, JI Hongbing, and FAN Zhenhua. Improved Iterated-corrector PHD with Gaussian mixture implementation[J]. Signal Processing, 2015, 114: 89–99. doi: 10.1016/j.sigpro.2015.01.007.
    [36]
    MALLICK M, KRISHNAMURTHY V, and VO B N. Integrated Tracking, Classification, and Sensor Management: Theory and Applications[M]. Piscataway: Wiley, 2013: 9–11.
    [37]
    RISTIC B and ARULAMPALAM S. Bernoulli particle filter with observer control for bearings-only tracking in clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2405–2415. doi: 10.1109/TAES.2012.6237599.
    [38]
    RAHMATHULLAH A S, GARCÍA-FERNÁNDEZ Á F, and SVENSSON L. Generalized optimal sub-pattern assignment metric[C]. The 20th International Conference on Information Fusion (Fusion), Xi’an, China, 2017: 1–8. doi: 10.23919/ICIF.2017.8009645.
    [39]
    BEARD M, VO B T, and VO B N. OSPA(2): Using the OSPA metric to evaluate multi-target tracking performance[C]. 2017 International Conference on Control, Automation and Information Sciences (ICCAIS), Chiang Mai, Thailand, 2017: 86–91. doi: 10.1109/ICCAIS.2017.8217598.
    [40]
    ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188. doi: 10.1109/78.978374.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(292) PDF downloads(53) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint