Citation: | JIA Hecheng, PU Xinyang, WANG Yanni, et al. Multi-view sample augumentation for SAR based on differentiable SAR renderer[J]. Journal of Radars, 2024, 13(2): 457–470. doi: 10.12000/JR24011 |
[1] |
ZHANG Liangpei, ZHANG Lefei, and DU Bo. Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2): 22–40. doi: 10.1109/MGRS.2016.2540798.
|
[2] |
MA Lei, LIU Yu, ZHANG Xueliang, et al. Deep learning in remote sensing applications: A meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 166–177. doi: 10.1016/j.isprsjprs.2019.04.015.
|
[3] |
ZHU Xiaoxiang, TUIA D, MOU Lichao, et al. Deep learning in remote sensing: A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8–36. doi: 10.1109/MGRS.2017.2762307.
|
[4] |
SUN Xian, WANG Bing, WANG Zhirui, et al. Research progress on few-shot learning for remote sensing image interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2387–2402. doi: 10.1109/JSTARS.2021.3052869.
|
[5] |
HUANG Zhongling, PAN Zongxu, and LEI Bin. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2324–2336. doi: 10.1109/TGRS.2019.2947634.
|
[6] |
SHORTEN C and KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 60. doi: 10.1186/s40537-019-0197-0.
|
[7] |
HENDRYCKS D, MU N, CUBUK E D, et al. AugMix: A simple data processing method to improve robustness and uncertainty[C]. 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2010.
|
[8] |
ALFASSY A, KARLINSKY L, AIDES A, et al. LaSO: Label-set operations networks for multi-label few-shot learning[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6541–6550. doi: 10.1109/CVPR.2019.00671.
|
[9] |
SCHWARTZ E, KARLINSKY L, SHTOK J, et al. Δ-encoder: An effective sample synthesis method for few-shot object recognition[C]. 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 2850–2860.
|
[10] |
ANTONIOU A, STORKEY A, and EDWARDS H. Data augmentation generative adversarial networks[EB/OL]. https://arxiv.org/abs/1711.04340v3, 2018.
|
[11] |
MALMGREN-HANSEN D, KUSK A, DALL J, et al. Improving SAR automatic target recognition models with transfer learning from simulated data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1484–1488. doi: 10.1109/LGRS.2017.2717486.
|
[12] |
GUO Jiayi, LEI Bin, DING Chibiao, et al. Synthetic aperture radar image synthesis by using generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1111–1115. doi: 10.1109/LGRS.2017.2699196.
|
[13] |
SONG Qian, XU Feng, ZHU Xiaoxiang, et al. Learning to generate SAR images with adversarial autoencoder[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210015. doi: 10.1109/TGRS.2021.3086817.
|
[14] |
GUO Qian and XU Feng. Learning low-dimensional SAR target representations from few samples[C]. 2022 International Applied Computational Electromagnetics Society Symposium, Xuzhou, China, 2022: 1–2. doi: 10.1109/ACES-China56081.2022.10065101.
|
[15] |
LIU Shichen, CHEN Weikai, LI Tianye, et al. Soft rasterizer: A differentiable renderer for image-based 3D reasoning[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 7708–7717. doi: 10.1109/ICCV.2019.00780.
|
[16] |
WANG Nanyang, ZHANG Yinda, LI Zhuwen, et al. Pixel2Mesh: Generating 3D mesh models from single RGB images[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 52–67. doi: 10.1007/978-3-030-01252-6_4.
|
[17] |
WEN Chao, ZHANG Yinda, LI Zhuwen, et al. Pixel2Mesh++: Multi-view 3D mesh generation via deformation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1042–1051. doi: 10.1109/ICCV.2019.00113.
|
[18] |
FU Shilei and XU Feng. Differentiable SAR renderer and image-based target reconstruction[J]. IEEE Transactions on Image Processing, 2022, 31: 6679–6693. doi: 10.1109/TIP.2022.3215069.
|
[19] |
KATO H, USHIKU Y, and HARADA T. Neural 3D mesh renderer[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3907–3916. doi: 10.1109/CVPR.2018.00411.
|
[20] |
XU Feng and JIN Yaqiu. Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3219–3234. doi: 10.1109/TGRS.2006.879544.
|
[21] |
FU Shilei, JIA Hecheng, PU Xinyang, et al. Extension of differentiable SAR renderer for ground target reconstruction from multiview images and shadows[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5217013. doi: 10.1109/TGRS.2023.3320515.
|
[22] |
Moving and stationary target acquisition and recognition (MSTAR) public release data[EB/OL]. https://www.sdms.afrl.af.mil/index.php?collection=mstar.
|
[23] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[24] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[25] |
SUN Ke, XIAO Bin, LIU Dong, et al. Deep high-resolution representation learning for human pose estimation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5693–5703. doi: 10.1109/CVPR.2019.00584.
|
[26] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 10012–10022. DOi: 10.1109/ICCV48922.2021.00986.
|
[1] | FU Hongwei, ZHANG Zhang, LUO Yu, ZHOU Zhichao, CHEN Zhanye, JIAN Xin, CHA Hao. Passive Radar Using LEO Communication Satellite Signals: An Overview and Prospect[J]. Journal of Radars. doi: 10.12000/JR24219 |
[2] | ZHOU Zibo, ZHANG Chaowei, XIA Saiqiang, XU Daoming, GAO Yan, ZENG Xiaoshuang. Feature Extraction of Rotor Blade Targets Based on Phase Compensation in a Passive Bistatic Radar[J]. Journal of Radars, 2021, 10(6): 929-943. doi: 10.12000/JR21132 |
[3] | WAN Xianrong, LIU Tongtong, YI Jianxin, DAN Yangpeng, HU Xiaokai. System Design and Target Detection Experiments for LTE-based Passive Radar[J]. Journal of Radars, 2020, 9(6): 967-973. doi: 10.12000/JR18111 |
[4] | JIN Biao, LI Cong, ZHANG Zhenkai. Group Target Track Initiation Method Aided by Echo Amplitude Information[J]. Journal of Radars, 2020, 9(4): 723-729. doi: 10.12000/JR19088 |
[5] | Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062 |
[6] | Li Yuqian, Yi Jianxin, Wan Xianrong, Liu Yuqi, Zhan Weijie. Helicopter Rotor Parameter Estimation Method for Passive Radar[J]. Journal of Radars, 2018, 7(3): 313-319. doi: 10.12000/JR17125 |
[7] | Wang Benjing, Yi Jianxin, Wan Xianrong, Dan Yangpeng. Inter-frame Ambiguity Analysis and Suppression of LTE Signal for Passive Radar[J]. Journal of Radars, 2018, 7(4): 514-522. doi: 10.12000/JR18025 |
[8] | Wan Xianrong, Sun Xuwang, Yi Jianxin, Lü Min, Rao Yunhua. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television[J]. Journal of Radars, 2017, 6(1): 65-72. doi: 10.12000/JR16134 |
[9] | Rao Yunhua, Ming Yanzhen, Lin Jing, Zhu Fengyuan, Wan Xianrong, Gong Ziping. Reference Signal Reconstruction and Its Impact on Detection Performance of WiFi-based Passive Radar[J]. Journal of Radars, 2016, 5(3): 284-292. doi: 10.12000/JR15108 |
[10] | Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080 |
[11] | Cheng Feng, Zeng Qing-ping, Gong Zi-ping. First-order Sea Clutter Modeling and Simulation of High Frequency Passive Radar[J]. Journal of Radars, 2014, 3(6): 720-726. doi: 10.12000/JR14131 |
[12] | Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157 |
[13] | Wu Yong, Wang Jun. Application of Mixed Kalman Filter to Passive Radar Target Tracking[J]. Journal of Radars, 2014, 3(6): 652-659. doi: 10.12000/JR14113 |
[14] | Wan Wei, Li Huang, Hong Yang. Issues on Multi-polarization of GNSS-R for Passive Radar Detection[J]. Journal of Radars, 2014, 3(6): 641-651. doi: 10.12000/JR14095 |
[15] | Wan Xian-rong, Yi Jian-xin, Cheng Feng, Rao Yun-hua, Gong Zi-ping, Ke Heng-yu. Single Frequency Network Based Distributed Passive Radar Technology[J]. Journal of Radars, 2014, 3(6): 623-631. doi: 10.12000/JR14156 |
[16] | Zhang Qiang, Wan Xian-rong, Fu Yan, Rao Yun-hua, Gong Zi-ping. Ambiguity Function Analysis and Processing for Passive Radar Based on CDR Digital Audio Broadcasting[J]. Journal of Radars, 2014, 3(6): 702-710. doi: 10.12000/JR14050 |
[17] | Lu Chuan-guo, Feng Xin-xi, Kong Yun-bo, Zeng Rong, Li Hong-Ying. Track Initiation Based on Parallel Hough Transform[J]. Journal of Radars, 2013, 2(3): 292-299. doi: 10.3724/SP.J.1300.2013.13036 |
[18] | RAO Yun-Hua, ZHU Feng-Yuan, ZHANG Xiu-Zhi, WAN Xian-Rong, GONG Zi-Ping. Ambiguity Function Analysis and Side Peaks Suppression of WiFi Signal for Passive Radar[J]. Journal of Radars, 2012, 1(3): 225-231. doi: 10.3724/SP.J.1300.2012.20061 |
[19] | Wan Xian-rong. An Overview on Development of Passive Radar Based on the LowFrequency Band Digital Broadcasting and TV Signals[J]. Journal of Radars, 2012, 1(2): 109-123. doi: 10.3724/SP.J.1300.2012.20027 |
[20] | Wan Xian-rong, Zhao Zhi-xin, Ke Heng-yu, Cheng Feng, Rao Yun-hua, Gong Zi-ping. Experimental Research of HF Passive Radar Based on DRM Digital AM Broadcasting[J]. Journal of Radars, 2012, 1(1): 11-18. doi: 10.3724/SP.J.1300.2013.20001 |
1. | 田正秋,何思远,蔡志灏,王筱祎. 介质粗糙地面上目标散射中心正向建模与分析. 电波科学学报. 2025(01): 12-20 . ![]() | |
2. | 靳明振,杨申,吴中杰,张会强,刘盛启. 基于RANSAC和三维谱峰分析的全姿态散射中心建模. 雷达学报. 2024(02): 471-484 . ![]() | |
3. | 罗汝,赵凌君,何奇山,计科峰,匡纲要. SAR图像飞机目标智能检测识别技术研究进展与展望. 雷达学报. 2024(02): 307-330 . ![]() | |
4. | 王粲雨,蒋李兵,任笑圆,王壮. 空间目标ISAR图像三维基元表示方法. 雷达学报. 2024(03): 682-695 . ![]() | |
5. | 陆睿民,李卫东,王锐,张帆,李沐阳,胡程. 最优字典选择多频段雷达信号宽带融合. 电子与信息学报. 2024(05): 2076-2086 . ![]() | |
6. | 李臻,化梦博,杨泽望,刘建,何思远,边志丹. 雷达目标散射中心正向模型扩展及散射特性分析. 电讯技术. 2024(11): 1850-1857 . ![]() | |
7. | YIN Hongcheng,YAN Hua. Parametric modeling and applications of target scattering centers: a review. Journal of Systems Engineering and Electronics. 2024(06): 1411-1427 . ![]() | |
8. | 孙圣凯,何姿,管灵,董纯柱,樊振宏,丁大志,殷红成. 基于散射中心模型的目标电磁特性智能生成网络研究. 电波科学学报. 2023(05): 835-844 . ![]() | |
9. | 魏少明,洪文衍,王俊,耿雪胤,金明明. 基于改进矩阵束的超宽带一维散射中心提取方法. 电子与信息学报. 2022(04): 1231-1240 . ![]() | |
10. | 邹嘉玮,何思远,杨泽望,刘建,边志丹. 复杂目标雷达图像形成机理分析. 科学技术与工程. 2022(28): 12468-12475 . ![]() | |
11. | 邢孟道,谢意远,高悦欣,张金松,刘嘉铭,吴之鑫. 电磁散射特征提取与成像识别算法综述. 雷达学报. 2022(06): 921-942 . ![]() | |
12. | 李高源,王晋宇,张长弓,冯博迪,高宇歌,杨海涛. SAR图像仿真方法研究综述. 计算机工程与应用. 2021(15): 62-72 . ![]() |