Citation: | JIA Hecheng, PU Xinyang, WANG Yanni, et al. Multi-view sample augumentation for SAR based on differentiable SAR renderer[J]. Journal of Radars, 2024, 13(2): 457–470. doi: 10.12000/JR24011 |
[1] |
ZHANG Liangpei, ZHANG Lefei, and DU Bo. Deep learning for remote sensing data: A technical tutorial on the state of the art[J]. IEEE Geoscience and Remote Sensing Magazine, 2016, 4(2): 22–40. doi: 10.1109/MGRS.2016.2540798.
|
[2] |
MA Lei, LIU Yu, ZHANG Xueliang, et al. Deep learning in remote sensing applications: A meta-analysis and review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152: 166–177. doi: 10.1016/j.isprsjprs.2019.04.015.
|
[3] |
ZHU Xiaoxiang, TUIA D, MOU Lichao, et al. Deep learning in remote sensing: A comprehensive review and list of resources[J]. IEEE Geoscience and Remote Sensing Magazine, 2017, 5(4): 8–36. doi: 10.1109/MGRS.2017.2762307.
|
[4] |
SUN Xian, WANG Bing, WANG Zhirui, et al. Research progress on few-shot learning for remote sensing image interpretation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2387–2402. doi: 10.1109/JSTARS.2021.3052869.
|
[5] |
HUANG Zhongling, PAN Zongxu, and LEI Bin. What, where, and how to transfer in SAR target recognition based on deep CNNs[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(4): 2324–2336. doi: 10.1109/TGRS.2019.2947634.
|
[6] |
SHORTEN C and KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): 60. doi: 10.1186/s40537-019-0197-0.
|
[7] |
HENDRYCKS D, MU N, CUBUK E D, et al. AugMix: A simple data processing method to improve robustness and uncertainty[C]. 8th International Conference on Learning Representations, Addis Ababa, Ethiopia, 2010.
|
[8] |
ALFASSY A, KARLINSKY L, AIDES A, et al. LaSO: Label-set operations networks for multi-label few-shot learning[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 6541–6550. doi: 10.1109/CVPR.2019.00671.
|
[9] |
SCHWARTZ E, KARLINSKY L, SHTOK J, et al. Δ-encoder: An effective sample synthesis method for few-shot object recognition[C]. 32nd International Conference on Neural Information Processing Systems, Montréal, Canada, 2018: 2850–2860.
|
[10] |
ANTONIOU A, STORKEY A, and EDWARDS H. Data augmentation generative adversarial networks[EB/OL]. https://arxiv.org/abs/1711.04340v3, 2018.
|
[11] |
MALMGREN-HANSEN D, KUSK A, DALL J, et al. Improving SAR automatic target recognition models with transfer learning from simulated data[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(9): 1484–1488. doi: 10.1109/LGRS.2017.2717486.
|
[12] |
GUO Jiayi, LEI Bin, DING Chibiao, et al. Synthetic aperture radar image synthesis by using generative adversarial nets[J]. IEEE Geoscience and Remote Sensing Letters, 2017, 14(7): 1111–1115. doi: 10.1109/LGRS.2017.2699196.
|
[13] |
SONG Qian, XU Feng, ZHU Xiaoxiang, et al. Learning to generate SAR images with adversarial autoencoder[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5210015. doi: 10.1109/TGRS.2021.3086817.
|
[14] |
GUO Qian and XU Feng. Learning low-dimensional SAR target representations from few samples[C]. 2022 International Applied Computational Electromagnetics Society Symposium, Xuzhou, China, 2022: 1–2. doi: 10.1109/ACES-China56081.2022.10065101.
|
[15] |
LIU Shichen, CHEN Weikai, LI Tianye, et al. Soft rasterizer: A differentiable renderer for image-based 3D reasoning[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 7708–7717. doi: 10.1109/ICCV.2019.00780.
|
[16] |
WANG Nanyang, ZHANG Yinda, LI Zhuwen, et al. Pixel2Mesh: Generating 3D mesh models from single RGB images[C]. 15th European Conference on Computer Vision, Munich, Germany, 2018: 52–67. doi: 10.1007/978-3-030-01252-6_4.
|
[17] |
WEN Chao, ZHANG Yinda, LI Zhuwen, et al. Pixel2Mesh++: Multi-view 3D mesh generation via deformation[C]. 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Korea (South), 2019: 1042–1051. doi: 10.1109/ICCV.2019.00113.
|
[18] |
FU Shilei and XU Feng. Differentiable SAR renderer and image-based target reconstruction[J]. IEEE Transactions on Image Processing, 2022, 31: 6679–6693. doi: 10.1109/TIP.2022.3215069.
|
[19] |
KATO H, USHIKU Y, and HARADA T. Neural 3D mesh renderer[C]. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018: 3907–3916. doi: 10.1109/CVPR.2018.00411.
|
[20] |
XU Feng and JIN Yaqiu. Imaging simulation of polarimetric SAR for a comprehensive terrain scene using the mapping and projection algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3219–3234. doi: 10.1109/TGRS.2006.879544.
|
[21] |
FU Shilei, JIA Hecheng, PU Xinyang, et al. Extension of differentiable SAR renderer for ground target reconstruction from multiview images and shadows[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5217013. doi: 10.1109/TGRS.2023.3320515.
|
[22] |
Moving and stationary target acquisition and recognition (MSTAR) public release data[EB/OL]. https://www.sdms.afrl.af.mil/index.php?collection=mstar.
|
[23] |
SIMONYAN K and ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]. 3rd International Conference on Learning Representations, San Diego, USA, 2015.
|
[24] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 2016: 770–778. doi: 10.1109/CVPR.2016.90.
|
[25] |
SUN Ke, XIAO Bin, LIU Dong, et al. Deep high-resolution representation learning for human pose estimation[C]. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA, 2019: 5693–5703. doi: 10.1109/CVPR.2019.00584.
|
[26] |
LIU Ze, LIN Yutong, CAO Yue, et al. Swin transformer: Hierarchical vision transformer using shifted windows[C]. 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Canada, 2021: 10012–10022. DOi: 10.1109/ICCV48922.2021.00986.
|