Volume 13 Issue 4
Aug.  2024
Turn off MathJax
Article Contents
OUYANG Fangping, CAO Jiaxuan, and DING Yipeng. A through-wall target location algorithm combing Hough transform and SVR in multi-view detection mode[J]. Journal of Radars, 2024, 13(4): 838–851. doi: 10.12000/JR23236
Citation: OUYANG Fangping, CAO Jiaxuan, and DING Yipeng. A through-wall target location algorithm combing Hough transform and SVR in multi-view detection mode[J]. Journal of Radars, 2024, 13(4): 838–851. doi: 10.12000/JR23236

A Through-wall Target Location Algorithm Combing Hough Transform and SVR in Multi-view Detection Mode

DOI: 10.12000/JR23236
Funds:  The Natural Science Foundation of Hunan Province (2022JJ30749), The Fundamental Research Funds for the Central Universities of Central South University (2023ZZTS0398), The National Natural Science Foundation of China (52073308) and the Special Foundation for Hunan Innovation Province Construction (2020RC3004)
More Information
  • Corresponding author: DING Yipeng, dingyipeng@sina.com
  • Received Date: 2023-11-30
  • Rev Recd Date: 2024-01-21
  • Available Online: 2024-01-23
  • Publish Date: 2024-01-31
  • Doppler through-wall radar faces two challenges when locating targets concealed behind walls: (1) precisely determining the instantaneous frequency of the target within the frequency aliasing region and (2) reducing the impact of the wall on positioning by determining accurate wall parameters. To address these issues, this paper introduces a target localization algorithm that combines the Hough transform and support vector regression-BP neural network. First, a multiview fusion model framework is proposed for through-wall target detection, which enables the auxiliary estimation of wall parameter information by acquiring target positions from different perspectives. Second, a high-precision extraction and estimation algorithm for the instantaneous frequency curve of the target is proposed by combining the differential evolutionary algorithm and Chebyshev interpolation polynomials. Finally, a target motion trajectory compensation algorithm based on the Back Propagation (BP) neural network is proposed using the estimated wall parameter information, which suppresses the distorting effect of obstacles on target localization results and achieves the accurate localization of the target behind a wall. Experimental results indicate that compared with the conventional short-time Fourier method, the developed algorithm can accurately extract target instantaneous frequency curves within the time-frequency aliasing region. Moreover, it successfully reduces the impact caused by walls, facilitating the precise localization of multiple targets behind walls, and the overall localization accuracy is improved ~85%.

     

  • loading
  • [1]
    刘振, 魏玺章, 黎湘. 一种新的随机PRI脉冲多普勒雷达无模糊MTD算法[J]. 雷达学报, 2012, 1(1): 28–35. doi: 10.3724/SP.J.1300.2012.10063.

    LIU Zhen, WEI Xizhang, and LI Xiang. Novel method of unambiguous moving target detection in pulse-Doppler radar with random pulse repetition interval[J]. Journal of Radars, 2012, 1(1): 28–35. doi: 10.3724/SP.J.1300.2012.10063.
    [2]
    胡程, 廖鑫, 向寅, 等. 一种生命探测雷达微多普勒测量灵敏度分析新方法[J]. 雷达学报, 2016, 5(5): 455–461. doi: 10.12000/JR16090.

    HU Cheng, LIAO Xin, XIANG Yin, et al. Novel analytic method for determining micro-Doppler measurement sensitivity in life-detection radar[J]. Journal of Radars, 2016, 5(5): 455–461. doi: 10.12000/JR16090.
    [3]
    PENG Yiqun, DING Yipeng, ZHANG Jiawei, et al. Target trajectory estimation algorithm based on time-frequency enhancement[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 8500807. doi: 10.1109/TIM.2022.3227997.
    [4]
    DING Minhao, DING Yipeng, PENG Yiqun, et al. CNN-based time-frequency image enhancement algorithm for target tracking using Doppler through-wall radar[J]. IEEE Geoscience and Remote Sensing Letter, 2023, 20: 3505305. doi: 10.1109/LGRS.2023.3282700.
    [5]
    WANG Genyuan and AMIN M G. Imaging through unknown walls using different standoff distances[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 4015–4025. doi: 10.1109/TSP.2006.879325.
    [6]
    丁一鹏, 厍彦龙. 穿墙雷达人体动作识别技术的研究现状与展望[J]. 电子与信息学报, 2022, 44(4): 1156–1175. doi: 10.11999/JEIT211051.

    DING Yipeng and SHE Yanlong. Research status and prospect of human movement recognition technique using through-wall radar[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1156–1175. doi: 10.11999/JEIT211051.
    [7]
    ABDOUSH Y, POJANI G, and CORAZZA G E. Adaptive instantaneous frequency estimation of multicomponent signals based on linear time-frequency transforms[J]. IEEE Transactions on Signal Processing, 2019, 67(12): 3100–3112. doi: 10.1109/TSP.2019.2912132.
    [8]
    HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193.
    [9]
    LI Po and ZHANG Qinghai. An improved Viterbi algorithm for IF extraction of multicomponent signals[J]. Signal, Image and Video Processing, 2018, 12(1): 171–179. doi: 10.1007/s11760-017-1143-2.
    [10]
    金添, 宋勇平, 崔国龙, 等. 低频电磁波建筑物内部结构透视技术研究进展[J]. 雷达学报, 2021, 10(3): 342–359. doi: 10.12000/JR20119.

    JIN Tian, SONG Yongping, CUI Guolong, et al. Advances on penetrating imaging of building layout technique using low frequency radio waves[J]. Journal of Radars, 2021, 10(3): 342–359. doi: 10.12000/JR20119.
    [11]
    JIN Tian, CHEN Bo, and ZHOU Zhimin. Image-domain estimation of wall parameters for autofocusing of through-the-wall SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1836–1843. doi: 10.1109/TGRS.2012.2206395.
    [12]
    PROTIVA P, MRKVICA J, and MACHAC J. Estimation of wall parameters from time-delay-only through-wall radar measurements[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(11): 4268–4278. doi: 10.1109/TAP.2011.2164206.
    [13]
    WANG Genyuan, AMIN M G, and ZHANG Yimin. New approach for target locations in the presence of wall ambiguities[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 301–315. doi: 10.1109/TAES.2006.1603424.
    [14]
    ZHANG Huamei, ZHANG Yerong, WANG Fangfang, et al. Application of support vector machines for estimating wall parameters in through-wall radar imaging[J]. International Journal of Antennas and Propagation, 2015, 2015: 456123. doi: 10.1155/2015/456123.
    [15]
    DING Yipeng, SUN Yinhua, HUANG Guowei, et al. Human target localization using Doppler through-wall radar based on micro-Doppler frequency estimation[J]. IEEE Sensors Journal, 2020, 20(15): 8778–8788. doi: 10.1109/JSEN.2020.2983104.
    [16]
    DING Yipeng, SUN Yinhua, YU Xiali, et al. Bezier-based Hough transforms for Doppler localization of human targets[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(1): 173–177. doi: 10.1109/lawp.2019.2956842.
    [17]
    CHEN Gang, CHEN Jin, DONG Guangming, et al. An adaptive non-parametric short-time Fourier transform: Application to echolocation[J]. Applied Acoustics, 2015, 87: 131–141. doi: 10.1016/j.apacoust.2014.06.018.
    [18]
    DING Yipeng, YU Xiali, LEI Chengxi, et al. A novel real-time human heart rate estimation method for noncontact vital sign radar detection[J]. IEEE Access, 2020, 8: 88689–88699. doi: 10.1109/ACCESS.2020.2993503.
    [19]
    LIN Xiaoyi, DING Yipeng, XU Xuemei, et al. A multi-target detection algorithm using high-order differential equation[J]. IEEE Sensors Journal, 2019, 19(13): 5062–5069. doi: 10.1109/JSEN.2019.2901923.
    [20]
    ZHOU Can, YU Wentao, HUANG Keke, et al. A New model transfer strategy among spectrometers based on SVR parameter calibrating[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1010413. doi: 10.1109/TIM.2021.3119129.
    [21]
    XIE Yaqin, WANG Kailiang, and HUANG Hai. BPNN based indoor fingerprinting localization algorithm against environmental fluctuations[J]. IEEE Sensors Journal, 2022, 22(12): 12002–12016. doi: 10.1109/JSEN.2022.3172860.
    [22]
    BOULIC R, THALMANN N M, and THALMANN D. A global human walking model with real-time kinematic personification[J]. The Visual Computer, 1990, 6(6): 344–358. doi: 10.1007/BF01901021.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(482) PDF downloads(131) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint