Zhao Junxiang, Liang Xingdong, Li Yanlei. Change Detection in SAR CCD Based on the Likelihood Change Statistics[J]. Journal of Radars, 2017, 6(2): 186-194. doi: 10.12000/JR16065
Citation: OUYANG Fangping, CAO Jiaxuan, and DING Yipeng. A through-wall target location algorithm combing Hough transform and SVR in multi-view detection mode[J]. Journal of Radars, 2024, 13(4): 838–851. doi: 10.12000/JR23236

A Through-wall Target Location Algorithm Combing Hough Transform and SVR in Multi-view Detection Mode

DOI: 10.12000/JR23236
Funds:  The Natural Science Foundation of Hunan Province (2022JJ30749), The Fundamental Research Funds for the Central Universities of Central South University (2023ZZTS0398), The National Natural Science Foundation of China (52073308) and the Special Foundation for Hunan Innovation Province Construction (2020RC3004)
More Information
  • Corresponding author: DING Yipeng, dingyipeng@sina.com
  • Received Date: 2023-11-30
  • Rev Recd Date: 2024-01-21
  • Available Online: 2024-01-23
  • Publish Date: 2024-01-31
  • Doppler through-wall radar faces two challenges when locating targets concealed behind walls: (1) precisely determining the instantaneous frequency of the target within the frequency aliasing region and (2) reducing the impact of the wall on positioning by determining accurate wall parameters. To address these issues, this paper introduces a target localization algorithm that combines the Hough transform and support vector regression-BP neural network. First, a multiview fusion model framework is proposed for through-wall target detection, which enables the auxiliary estimation of wall parameter information by acquiring target positions from different perspectives. Second, a high-precision extraction and estimation algorithm for the instantaneous frequency curve of the target is proposed by combining the differential evolutionary algorithm and Chebyshev interpolation polynomials. Finally, a target motion trajectory compensation algorithm based on the Back Propagation (BP) neural network is proposed using the estimated wall parameter information, which suppresses the distorting effect of obstacles on target localization results and achieves the accurate localization of the target behind a wall. Experimental results indicate that compared with the conventional short-time Fourier method, the developed algorithm can accurately extract target instantaneous frequency curves within the time-frequency aliasing region. Moreover, it successfully reduces the impact caused by walls, facilitating the precise localization of multiple targets behind walls, and the overall localization accuracy is improved ~85%.

     

  • [1]
    刘振, 魏玺章, 黎湘. 一种新的随机PRI脉冲多普勒雷达无模糊MTD算法[J]. 雷达学报, 2012, 1(1): 28–35. doi: 10.3724/SP.J.1300.2012.10063.

    LIU Zhen, WEI Xizhang, and LI Xiang. Novel method of unambiguous moving target detection in pulse-Doppler radar with random pulse repetition interval[J]. Journal of Radars, 2012, 1(1): 28–35. doi: 10.3724/SP.J.1300.2012.10063.
    [2]
    胡程, 廖鑫, 向寅, 等. 一种生命探测雷达微多普勒测量灵敏度分析新方法[J]. 雷达学报, 2016, 5(5): 455–461. doi: 10.12000/JR16090.

    HU Cheng, LIAO Xin, XIANG Yin, et al. Novel analytic method for determining micro-Doppler measurement sensitivity in life-detection radar[J]. Journal of Radars, 2016, 5(5): 455–461. doi: 10.12000/JR16090.
    [3]
    PENG Yiqun, DING Yipeng, ZHANG Jiawei, et al. Target trajectory estimation algorithm based on time-frequency enhancement[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 8500807. doi: 10.1109/TIM.2022.3227997.
    [4]
    DING Minhao, DING Yipeng, PENG Yiqun, et al. CNN-based time-frequency image enhancement algorithm for target tracking using Doppler through-wall radar[J]. IEEE Geoscience and Remote Sensing Letter, 2023, 20: 3505305. doi: 10.1109/LGRS.2023.3282700.
    [5]
    WANG Genyuan and AMIN M G. Imaging through unknown walls using different standoff distances[J]. IEEE Transactions on Signal Processing, 2006, 54(10): 4015–4025. doi: 10.1109/TSP.2006.879325.
    [6]
    丁一鹏, 厍彦龙. 穿墙雷达人体动作识别技术的研究现状与展望[J]. 电子与信息学报, 2022, 44(4): 1156–1175. doi: 10.11999/JEIT211051.

    DING Yipeng and SHE Yanlong. Research status and prospect of human movement recognition technique using through-wall radar[J]. Journal of Electronics & Information Technology, 2022, 44(4): 1156–1175. doi: 10.11999/JEIT211051.
    [7]
    ABDOUSH Y, POJANI G, and CORAZZA G E. Adaptive instantaneous frequency estimation of multicomponent signals based on linear time-frequency transforms[J]. IEEE Transactions on Signal Processing, 2019, 67(12): 3100–3112. doi: 10.1109/TSP.2019.2912132.
    [8]
    HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193.
    [9]
    LI Po and ZHANG Qinghai. An improved Viterbi algorithm for IF extraction of multicomponent signals[J]. Signal, Image and Video Processing, 2018, 12(1): 171–179. doi: 10.1007/s11760-017-1143-2.
    [10]
    金添, 宋勇平, 崔国龙, 等. 低频电磁波建筑物内部结构透视技术研究进展[J]. 雷达学报, 2021, 10(3): 342–359. doi: 10.12000/JR20119.

    JIN Tian, SONG Yongping, CUI Guolong, et al. Advances on penetrating imaging of building layout technique using low frequency radio waves[J]. Journal of Radars, 2021, 10(3): 342–359. doi: 10.12000/JR20119.
    [11]
    JIN Tian, CHEN Bo, and ZHOU Zhimin. Image-domain estimation of wall parameters for autofocusing of through-the-wall SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(3): 1836–1843. doi: 10.1109/TGRS.2012.2206395.
    [12]
    PROTIVA P, MRKVICA J, and MACHAC J. Estimation of wall parameters from time-delay-only through-wall radar measurements[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(11): 4268–4278. doi: 10.1109/TAP.2011.2164206.
    [13]
    WANG Genyuan, AMIN M G, and ZHANG Yimin. New approach for target locations in the presence of wall ambiguities[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(1): 301–315. doi: 10.1109/TAES.2006.1603424.
    [14]
    ZHANG Huamei, ZHANG Yerong, WANG Fangfang, et al. Application of support vector machines for estimating wall parameters in through-wall radar imaging[J]. International Journal of Antennas and Propagation, 2015, 2015: 456123. doi: 10.1155/2015/456123.
    [15]
    DING Yipeng, SUN Yinhua, HUANG Guowei, et al. Human target localization using Doppler through-wall radar based on micro-Doppler frequency estimation[J]. IEEE Sensors Journal, 2020, 20(15): 8778–8788. doi: 10.1109/JSEN.2020.2983104.
    [16]
    DING Yipeng, SUN Yinhua, YU Xiali, et al. Bezier-based Hough transforms for Doppler localization of human targets[J]. IEEE Antennas and Wireless Propagation Letters, 2020, 19(1): 173–177. doi: 10.1109/lawp.2019.2956842.
    [17]
    CHEN Gang, CHEN Jin, DONG Guangming, et al. An adaptive non-parametric short-time Fourier transform: Application to echolocation[J]. Applied Acoustics, 2015, 87: 131–141. doi: 10.1016/j.apacoust.2014.06.018.
    [18]
    DING Yipeng, YU Xiali, LEI Chengxi, et al. A novel real-time human heart rate estimation method for noncontact vital sign radar detection[J]. IEEE Access, 2020, 8: 88689–88699. doi: 10.1109/ACCESS.2020.2993503.
    [19]
    LIN Xiaoyi, DING Yipeng, XU Xuemei, et al. A multi-target detection algorithm using high-order differential equation[J]. IEEE Sensors Journal, 2019, 19(13): 5062–5069. doi: 10.1109/JSEN.2019.2901923.
    [20]
    ZHOU Can, YU Wentao, HUANG Keke, et al. A New model transfer strategy among spectrometers based on SVR parameter calibrating[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1010413. doi: 10.1109/TIM.2021.3119129.
    [21]
    XIE Yaqin, WANG Kailiang, and HUANG Hai. BPNN based indoor fingerprinting localization algorithm against environmental fluctuations[J]. IEEE Sensors Journal, 2022, 22(12): 12002–12016. doi: 10.1109/JSEN.2022.3172860.
    [22]
    BOULIC R, THALMANN N M, and THALMANN D. A global human walking model with real-time kinematic personification[J]. The Visual Computer, 1990, 6(6): 344–358. doi: 10.1007/BF01901021.
  • Relative Articles

    [1]FU Hongwei, ZHANG Zhang, LUO Yu, ZHOU Zhichao, CHEN Zhanye, JIAN Xin, CHA Hao. Passive Radar Using LEO Communication Satellite Signals: An Overview and Prospect[J]. Journal of Radars. doi: 10.12000/JR24219
    [2]ZHOU Zibo, ZHANG Chaowei, XIA Saiqiang, XU Daoming, GAO Yan, ZENG Xiaoshuang. Feature Extraction of Rotor Blade Targets Based on Phase Compensation in a Passive Bistatic Radar[J]. Journal of Radars, 2021, 10(6): 929-943. doi: 10.12000/JR21132
    [3]WAN Xianrong, LIU Tongtong, YI Jianxin, DAN Yangpeng, HU Xiaokai. System Design and Target Detection Experiments for LTE-based Passive Radar[J]. Journal of Radars, 2020, 9(6): 967-973. doi: 10.12000/JR18111
    [4]JIN Biao, LI Cong, ZHANG Zhenkai. Group Target Track Initiation Method Aided by Echo Amplitude Information[J]. Journal of Radars, 2020, 9(4): 723-729. doi: 10.12000/JR19088
    [5]Liu Yuqi, Yi Jianxin, Wan Xianrong, Cheng Feng, Rao Yunhua, Gong Ziping. Experimental Research on Micro-Doppler Effect of Multi-rotor Drone with Digital Television Based Passive Radar[J]. Journal of Radars, 2018, 7(5): 585-592. doi: 10.12000/JR18062
    [6]Li Yuqian, Yi Jianxin, Wan Xianrong, Liu Yuqi, Zhan Weijie. Helicopter Rotor Parameter Estimation Method for Passive Radar[J]. Journal of Radars, 2018, 7(3): 313-319. doi: 10.12000/JR17125
    [7]Wang Benjing, Yi Jianxin, Wan Xianrong, Dan Yangpeng. Inter-frame Ambiguity Analysis and Suppression of LTE Signal for Passive Radar[J]. Journal of Radars, 2018, 7(4): 514-522. doi: 10.12000/JR18025
    [8]Wan Xianrong, Sun Xuwang, Yi Jianxin, Lü Min, Rao Yunhua. Synchronous Design and Test of Distributed Passive Radar Systems Based on Digital Broadcasting and Television[J]. Journal of Radars, 2017, 6(1): 65-72. doi: 10.12000/JR16134
    [9]Rao Yunhua, Ming Yanzhen, Lin Jing, Zhu Fengyuan, Wan Xianrong, Gong Ziping. Reference Signal Reconstruction and Its Impact on Detection Performance of WiFi-based Passive Radar[J]. Journal of Radars, 2016, 5(3): 284-292. doi: 10.12000/JR15108
    [10]Jiang Tie-zhen, Xiao Wen-shu, Li Da-sheng, Liao Tong-qing. Feasibility Study on Passive-radar Detection of Space Targets Using Spaceborne Illuminators of Opportunity[J]. Journal of Radars, 2014, 3(6): 711-719. doi: 10.12000/JR14080
    [11]Cheng Feng, Zeng Qing-ping, Gong Zi-ping. First-order Sea Clutter Modeling and Simulation of High Frequency Passive Radar[J]. Journal of Radars, 2014, 3(6): 720-726. doi: 10.12000/JR14131
    [12]Chen Wei, Wan Xian-rong, Zhang Xun, Rao Yun-hua, Cheng Feng. Parallel Implementation of Multi-channel Time Domain Clutter Suppression Algorithm for Passive Radar[J]. Journal of Radars, 2014, 3(6): 686-693. doi: 10.12000/JR14157
    [13]Wu Yong, Wang Jun. Application of Mixed Kalman Filter to Passive Radar Target Tracking[J]. Journal of Radars, 2014, 3(6): 652-659. doi: 10.12000/JR14113
    [14]Wan Wei, Li Huang, Hong Yang. Issues on Multi-polarization of GNSS-R for Passive Radar Detection[J]. Journal of Radars, 2014, 3(6): 641-651. doi: 10.12000/JR14095
    [15]Wan Xian-rong, Yi Jian-xin, Cheng Feng, Rao Yun-hua, Gong Zi-ping, Ke Heng-yu. Single Frequency Network Based Distributed Passive Radar Technology[J]. Journal of Radars, 2014, 3(6): 623-631. doi: 10.12000/JR14156
    [16]Zhang Qiang, Wan Xian-rong, Fu Yan, Rao Yun-hua, Gong Zi-ping. Ambiguity Function Analysis and Processing for Passive Radar Based on CDR Digital Audio Broadcasting[J]. Journal of Radars, 2014, 3(6): 702-710. doi: 10.12000/JR14050
    [17]Lu Chuan-guo, Feng Xin-xi, Kong Yun-bo, Zeng Rong, Li Hong-Ying. Track Initiation Based on Parallel Hough Transform[J]. Journal of Radars, 2013, 2(3): 292-299. doi: 10.3724/SP.J.1300.2013.13036
    [18]RAO Yun-Hua, ZHU Feng-Yuan, ZHANG Xiu-Zhi, WAN Xian-Rong, GONG Zi-Ping. Ambiguity Function Analysis and Side Peaks Suppression of WiFi Signal for Passive Radar[J]. Journal of Radars, 2012, 1(3): 225-231. doi: 10.3724/SP.J.1300.2012.20061
    [19]Wan Xian-rong. An Overview on Development of Passive Radar Based on the LowFrequency Band Digital Broadcasting and TV Signals[J]. Journal of Radars, 2012, 1(2): 109-123. doi: 10.3724/SP.J.1300.2012.20027
    [20]Wan Xian-rong, Zhao Zhi-xin, Ke Heng-yu, Cheng Feng, Rao Yun-hua, Gong Zi-ping. Experimental Research of HF Passive Radar Based on DRM Digital AM Broadcasting[J]. Journal of Radars, 2012, 1(1): 11-18. doi: 10.3724/SP.J.1300.2013.20001
  • Cited by

    Periodical cited type(12)

    1. 田正秋,何思远,蔡志灏,王筱祎. 介质粗糙地面上目标散射中心正向建模与分析. 电波科学学报. 2025(01): 12-20 .
    2. 靳明振,杨申,吴中杰,张会强,刘盛启. 基于RANSAC和三维谱峰分析的全姿态散射中心建模. 雷达学报. 2024(02): 471-484 . 本站查看
    3. 罗汝,赵凌君,何奇山,计科峰,匡纲要. SAR图像飞机目标智能检测识别技术研究进展与展望. 雷达学报. 2024(02): 307-330 . 本站查看
    4. 王粲雨,蒋李兵,任笑圆,王壮. 空间目标ISAR图像三维基元表示方法. 雷达学报. 2024(03): 682-695 . 本站查看
    5. 陆睿民,李卫东,王锐,张帆,李沐阳,胡程. 最优字典选择多频段雷达信号宽带融合. 电子与信息学报. 2024(05): 2076-2086 .
    6. 李臻,化梦博,杨泽望,刘建,何思远,边志丹. 雷达目标散射中心正向模型扩展及散射特性分析. 电讯技术. 2024(11): 1850-1857 .
    7. YIN Hongcheng,YAN Hua. Parametric modeling and applications of target scattering centers: a review. Journal of Systems Engineering and Electronics. 2024(06): 1411-1427 .
    8. 孙圣凯,何姿,管灵,董纯柱,樊振宏,丁大志,殷红成. 基于散射中心模型的目标电磁特性智能生成网络研究. 电波科学学报. 2023(05): 835-844 .
    9. 魏少明,洪文衍,王俊,耿雪胤,金明明. 基于改进矩阵束的超宽带一维散射中心提取方法. 电子与信息学报. 2022(04): 1231-1240 .
    10. 邹嘉玮,何思远,杨泽望,刘建,边志丹. 复杂目标雷达图像形成机理分析. 科学技术与工程. 2022(28): 12468-12475 .
    11. 邢孟道,谢意远,高悦欣,张金松,刘嘉铭,吴之鑫. 电磁散射特征提取与成像识别算法综述. 雷达学报. 2022(06): 921-942 . 本站查看
    12. 李高源,王晋宇,张长弓,冯博迪,高宇歌,杨海涛. SAR图像仿真方法研究综述. 计算机工程与应用. 2021(15): 62-72 .

    Other cited types(6)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 25.1 %FULLTEXT: 25.1 %META: 59.1 %META: 59.1 %PDF: 15.8 %PDF: 15.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.7 %其他: 8.7 %其他: 7.3 %其他: 7.3 %Indianapolis: 0.3 %Indianapolis: 0.3 %Sceaux: 0.3 %Sceaux: 0.3 %Taichung: 0.1 %Taichung: 0.1 %Thane: 0.3 %Thane: 0.3 %上海: 1.3 %上海: 1.3 %东京: 0.4 %东京: 0.4 %东京都: 0.1 %东京都: 0.1 %东莞: 0.2 %东莞: 0.2 %临夏: 0.1 %临夏: 0.1 %伊斯兰堡: 1.4 %伊斯兰堡: 1.4 %佛罗伦萨: 0.3 %佛罗伦萨: 0.3 %保定: 0.1 %保定: 0.1 %兰州: 0.1 %兰州: 0.1 %北京: 9.7 %北京: 9.7 %十堰: 0.1 %十堰: 0.1 %南京: 2.0 %南京: 2.0 %南昌: 0.3 %南昌: 0.3 %南通: 0.2 %南通: 0.2 %厦门: 0.2 %厦门: 0.2 %合肥: 0.7 %合肥: 0.7 %呼和浩特: 1.4 %呼和浩特: 1.4 %哥伦布: 0.2 %哥伦布: 0.2 %唐山: 0.1 %唐山: 0.1 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.8 %天津: 0.8 %威海: 0.3 %威海: 0.3 %宁波: 0.3 %宁波: 0.3 %安康: 0.4 %安康: 0.4 %密蘇里城: 0.3 %密蘇里城: 0.3 %常州: 0.4 %常州: 0.4 %常德: 0.1 %常德: 0.1 %广州: 1.9 %广州: 1.9 %库比蒂诺: 0.1 %库比蒂诺: 0.1 %开封: 0.9 %开封: 0.9 %张家口: 0.7 %张家口: 0.7 %徐州: 0.1 %徐州: 0.1 %德罕: 0.1 %德罕: 0.1 %成都: 2.0 %成都: 2.0 %扬州: 0.1 %扬州: 0.1 %新德里: 0.4 %新德里: 0.4 %无锡: 0.2 %无锡: 0.2 %昆明: 0.7 %昆明: 0.7 %本溪: 0.2 %本溪: 0.2 %杭州: 1.3 %杭州: 1.3 %枣庄: 0.1 %枣庄: 0.1 %格兰特县: 0.4 %格兰特县: 0.4 %桂林: 0.2 %桂林: 0.2 %榆林: 0.1 %榆林: 0.1 %武威: 0.1 %武威: 0.1 %武汉: 2.9 %武汉: 2.9 %沈阳: 0.1 %沈阳: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.3 %济南: 0.3 %海口: 0.1 %海口: 0.1 %淮南: 0.1 %淮南: 0.1 %深圳: 0.6 %深圳: 0.6 %渭南: 0.2 %渭南: 0.2 %湖州: 0.2 %湖州: 0.2 %漯河: 0.7 %漯河: 0.7 %潍坊: 0.2 %潍坊: 0.2 %烟台: 0.3 %烟台: 0.3 %珠海: 0.1 %珠海: 0.1 %石家庄: 0.5 %石家庄: 0.5 %纽约: 0.3 %纽约: 0.3 %芒廷维尤: 21.5 %芒廷维尤: 21.5 %芝加哥: 1.9 %芝加哥: 1.9 %苏州: 0.2 %苏州: 0.2 %葫芦岛: 0.1 %葫芦岛: 0.1 %蒙特利尔: 0.2 %蒙特利尔: 0.2 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.2 %衡阳: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 8.2 %西宁: 8.2 %西安: 3.7 %西安: 3.7 %诺沃克: 3.6 %诺沃克: 3.6 %贵阳: 0.4 %贵阳: 0.4 %运城: 1.0 %运城: 1.0 %邯郸: 0.1 %邯郸: 0.1 %郑州: 0.2 %郑州: 0.2 %重庆: 0.8 %重庆: 0.8 %铁岭: 0.1 %铁岭: 0.1 %长沙: 1.2 %长沙: 1.2 %青岛: 1.1 %青岛: 1.1 %香港: 0.1 %香港: 0.1 %黄冈: 0.2 %黄冈: 0.2 %齐齐哈尔: 1.0 %齐齐哈尔: 1.0 %其他其他IndianapolisSceauxTaichungThane上海东京东京都东莞临夏伊斯兰堡佛罗伦萨保定兰州北京十堰南京南昌南通厦门合肥呼和浩特哥伦布唐山嘉兴天津威海宁波安康密蘇里城常州常德广州库比蒂诺开封张家口徐州德罕成都扬州新德里无锡昆明本溪杭州枣庄格兰特县桂林榆林武威武汉沈阳洛阳济南海口淮南深圳渭南湖州漯河潍坊烟台珠海石家庄纽约芒廷维尤芝加哥苏州葫芦岛蒙特利尔衡水衡阳襄阳西宁西安诺沃克贵阳运城邯郸郑州重庆铁岭长沙青岛香港黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索
    Article views(608) PDF downloads(142) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint